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ABSTRACT

ELEMENTS OF EQUILIBRIUM METHODS FOR SOCIAL ANAiYSIS
Mufat R. Sertel
Submitted to the Alfred P. S;oan-Sghoo} of Ménagement
on January‘EZ, 1971 |
in'partial fulfillmenf of the requirements for  the

Degree of Doctor of.Philosophy

The study is introduced by a first chapter.

The second chapter, "Formal Elements of Social Systems", first
gives set—theoretical definitions for abstract social svstems and their
elements, establishing some terminology and notation as well. It is then
discussed’how a social system is a generalization of an economy and how
the latter is, in turn, a generalization of a game.

Chapter 3, "Topological Foundations of Social Systems," develops some
continuity and convexity results for behavors in static and dynamic social
systems - all of which are defined in the previous chapter - after
presenting some mathematics which is of special use in social analysis.
This mathematics includes some facts concerning hyperspaces, a treatment
of semi-linear topological spaces and their fixed point properties as
investigated by Prakash and Sertel, and some further facts relating to
the continuity and convexity properties of objective .-functionals and
their associated infimum and supremum functionals, dealing with feasible
regions as points in suitable hyperspaces. '

Chapter 4, "Evolution and Equilibrium in Social Systems", first
discusses some notions related to social equilibria, including Nash,
Pareto, and core points, and then demonstrates existence results for
social equilibrium for static and dynamic social systems. The contractual
set i.e., set of social equilibria, is proved to be non-vacuous for a type
‘of static social system and four types of dynamic social system. In the
static case, Fan's fixed point theorem is applied. In the four dynamic
types of social system, a more powerful theorem is needed, as a fixed
point is sought in a semi-linear space. A fixed point theorem of Prakash
and Sertel fits the specification?and is applied. 1In all the cases where
the contractual set is shown to be non-empty, it is shown to be compact
as well. TFor certain social systems the contractual set is shown also

L



to be convex.

The fifth and final chapter discusses "Extensions and Applications"
of the framework and theory above. The first extension indicated is that
of probabilistic social systems. TFor these, a notion of a behavior as a
probability measure on a sigma-field of actions is offered, matters
pertaining to the measurable numerical representabilitv of preferences
settled, and a notion ofprobabilistic social system formalized. Second, as an
application, a framework for the analysis of power is suggested, after a '
certain causal relation of an event inducing another is formally introduced.
The resulting concept and measure of power is presented as a corrected
generalization and formalization of Dahl's concept and measure of power.
The importance of equilibrium methods for power analysis based on the above
is clarified. Third, it is indicated how social systems may be viewed
as evolutionary systems, modifying the notion of dynamical system, so that
the attraction and stability of contractual sets and cores may be
investigated. Finally, the large topic of the guidance of social svstems
and organizations via incentive schemes, information systems and other
means is discussed as an area of application, suggesting also a number of
extensions which promise use in the area of 1eglslat10n and the analysis
- of multi-level social systems. - :
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1. INTRODUCTION

This study is motiygted by the belief fhat notipns aﬁd-methods
of equi%ibfium can be déveloped—andlapp;igd in social analysis. By
social énalysis is meaqt-the positive and normative.study of social
" systems and social pheﬁomena.

The first thing to do was to clarify and reduce to a few the
notions needed, assembling them in a consistent framewo;k containing
all ;hat‘is needed and nothing that is not. The kéy notion here is
that os a social system. For clarity and purity, it is defined set-
theoretically; Next it is equippedfﬁith certain topologicai propertiés.

To do anyfhing with the notion of equiliﬁrium fofjsocial systems,
it has to’be demonstrated that such a thing exists, and ihat it exists for
a wide enough class of social systéms. Tﬁis is done. Extensions'and
applications are discussed.

Since each chapter, except the present, begins with an introduction,

the reader will be spared a lengthy introduétibn here.



FORMAL ELEMENTS OF SOCIAL SYSTEMS

The present chapter first gives definitions'forISOCial
systems and their elements, also intrqducing some basic terminology
and notafiog to be used in the‘;;quel. The fofmél notion of é
'social syétem' as defined is then compared with the more familigy

‘economy' and 'game', in both of which the existence and various

optimality and stability properties of equilibfium'have been

investigated extensively and equilibrium methods of analysis

héve long been used fruitfully. This comparison;’from which
games emerge as restricted vergions of economies and the latter
emerge as restricted versions of social systems, is ihtended to.
provide perépective and context within which to evaluate £he

framework and results presented in this study.



2.1 Preliminaries

This.section is.designed to introduce the basic notions and

some of thé notation andlterminology to be used in the seqﬁel.

The cegtral notion is that of a sogiai system, defined set-
theoreticélly in 2'1f2 after some notation is established in 2.1.1.
Some terminology and further notation is established in 2.1.3

to refer to the elements of social systems and to some important
formal objeéfs which are derived from these elements. The discussion
in 2.1.4 turns from matter; of definition andvdenoﬁation to the
'intended connotation of the terminology introduced, so as to
provide some intuitive grounding for the reader's formal under-
,étandiné. This is done by examining the typical manner in which
the elemenfs of a social system operate. In this ﬁay it is

hoped also to commgnicate the motivation for the way in which

those elements are named. A motiva?ion for the next definition,
2.1.5, distinguishing beﬁween static and dynamic social systems,
is also derived from that discussion. The ;onsiétencj

of the definition of sﬁcial'sygtems is checked by'2.1.7, after
someArequisiée topological conventions and terminology are
established in 2.1.6, Finally, 2.1.8 a&dsia note to clarify

the important notion of 'incentive' in social systems.

2.1.1 Standing Notation: The empty set will be denoted by ¢.

The set of real numbers will be denoted by R.
For any set X, [X} will denote the set of non-empty subsets

of X. Whenever [X] is endowed with a ‘topology, that topology
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will at least be as fine as the uppef semi-finite (usf) topology.
(Formfhese notioﬁs, see 3.1.2 or the classic work of Michael
(1951) concerned with topologies on spaces of subsets.)

The rather usual symbols 'l' and "' will be used to

.denote,réspectively, products and projectiomns. 'As regards
products, an»important word of caution is due.A.Whenever the
product is the Cartesian product of mere sets, the product is to
be understood merely as such. Whenever it is a ﬁroduét of
topologized sets, the‘prpduct is to bé underétéod as eduipped
with the product topology. Whenever it is the product of
sigpaéfields, it is to be understood as the prbduct éigma—field,
and similarly for measure spaces. Wﬁen the index set is not
Qery crowde&, the symbol 'x' will also be used_for_products.
“E.g., if {Xili elI} is a family of sets indexed by 1 € I, and

if the index set I = {1,2}, then the product may be written

as Xy x X,, rather than HI{Xi} or g{Xili € i}df izIXi, all

of which denote the same. As a special kind of product, Yx
will den;te the set of ;11~functions £:X > Y mapping X into Y,
i.e. such that f(x) e Y(x € X). (Of course, Yx.is_the same as
i{Yxth‘= f}.) Finally, subscripts of = will'indicate the

range of the function, so that, é.g.,~ﬂx denotes projection into X.

AN



2.1.2 Definition : A social system is an ordered seven-tuplet

$=<W, U, H, 6, I, T, A>, where

e

(2.1.2.1) W= {xa ¥ ¢lacA¥ ¢
is a non-enpty family of‘nonFéﬁpty sets X,

fromkwhich-we define X = [iIX , Xa =

X
A A {x} P

(2.1.2.2) U= {u: X x R~>R|lo.e A}
. ) ' o
is an associated family of real-valued functions

u, on X x R; (see also 2;1.8);

-

(2.1.2.3) H= f{h: x* > x%la e A}
is an associated family of tréqsformatibns ha’

o
of X

(2.1.2.4) G={g : X Rla e A}
" a . .
is an associated family of real-valued functions

8§, on X

(2.1.2.5) T={i: R > ®ue Al
is an associated family of function-~valued
functions i assigning a real-valued function on

X to each real-valued function .on X:



(2.1.2.6) ‘ T={t:Xx 2pa+ pclx 1, # 4,0 € Al
is an associated family of functions t, assigning

a non-empty subset of X, to each ordered pair
whose first element is a point x € X and second
element belongs to the prodﬁct HDa of a certain
family {Dala € A} of non-empty éollections

DaC[Xa];

U [da:”a € A}.'
d_eD, ' '
is a self-indexed family of mappings

(2.1.2.7) A={a:X%% D -
.o

(2.1.2.7Y) a(x“,da) = {x ¢ dalaa(xa,x“) > swp @ (v, )},
: e : : yaeda :

(x* e X%, da € Da)s

where ﬁa ts defined as. in 2{1;3.10 below.

2.1.3 Standing Terminology and Notation: Let S be as in 2.1.2.

(2.1.3.1) X, will be called the behavior“sﬁace of o,

and x willibe called a behavior of va

iff X, € Xa'

)“, .
47"\' i



(2.1.3.2) X* will be called the o-exclusive behavior

space of § (or of A), and x, will be called

an a-exclusive behavior of S {or of A) iff

a a
Xx X,

(2.1.3}3) ‘ X will be called the (collectiwe) behavior space

of § (or of A), and x will be called a (collective)

hehavior of S (or of A) iff x & X.

(2.1.3.4 u, will be called the utility flunction of a.

The set RA\will sometimes be emlled the

distribution space of S (or of A), generic

elements H{pa} e &A being demwted by p, so
A R ;,
A . -
thatn (p) =p_ , with R = MWI{R |R = R,a € A}.
ROL o . A o' o .
In this case, a point p ¢ RA will be called a

distribution to A and Py the sihare of o in o.

The function u: X x RA > RA, defined by u(x,p)

= H{ua(x,pa)}(x € X, p ¢ rA) will be called
A B
the utility scheme of S (or off A).

(2.1.3.5) h, will be called the impressiion function

of a. The function h: X + HX>, defined by
, A
h(x) = I{h (z (X))} (x € X)) will be called
A ¢ x® -
the impréésion scheme of S (ou of A).




(2.1.3.6)

(2.1.3.7)

(2.1.3.8)

(2.1.3.9)

(2.1.3.10)

ga will be called the incentive function

for a. The function g: X > RA, defined by.
g(x) = n{p (x)} (x ¢ X) will be called the
A : :

incentive scheme for (or of) S ( or for A).

iu will be called the interpretation function

A .
of a‘v_The function i: (RX)A,+ (RX) , defined

by i(g) = T{i (g)} (g e (®RDP), will be
: A oo ,
called the interpretation scheme of S (or of A).

t, will be called the feasibility transformation

for a, D, being called the feasibility space of a

and a subset da being called a feasibility
for o 1ff d e D . The function t, defined by

t(x,d) = ﬁ{ta(x,d)} (xeX; d= 2{da}, d €D, ,

o € A), will be called the collective feasibility

transformation for (or of) S (or for A).

A will be called the personnel of S, each member

o e A being called a behavor .

For varfous_abbreviations, the following

alternate notations will be used:



2.1.4

g B0, 8 (8) G GED)

= Gy G by ), g Gy shy (x3)))

= '.\;a (Xog ’hu (Xa) )

it

e a
wa(xa,x ).

The derived function w, will be called the

effective utility function of a.

Discussion: Although the rigorous deﬁelopment of formal results

may necessitate the use Qf uncommon terminology and_symbolism,
it is difficult to overemphasize the usefulnesé of being able

to express the underlying postulates and émergﬁﬁg results of a
theory'in intuiti&ely'pleasing fashion, feasonabiy within common
lénguage. Thé difficulties in échieving this sort of a restric-
tion to the simple and plain, of course, are the food on which

technical jargon and alienated scholarism thriwe.

Realizing that there is no scarcity of jarpon, especially

"in the class of discinlines concerned with sociml phenomena,

the aim in term-coining here cannot be to expamd the present
glossary, as it would be foolish to wish to irriigate the sea.
What the aim is can be epresséd‘in two compomemts: first,

to convey the meaning of the formal framework a@md theory in
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reasonaPly common and unartificial terﬁinolégy, so that it is easilv
understood, at least in its broad outline; and, second to offer

in this terminology some precision and conciseness for what are

the essentqu»elements of the framework and theory, thus hoping

to bring attention to what is a small class of important elements,
while giving that attent%on a clear focus'by'eliminating ambiguity
and vagueness via the formalism of definition.

Now.that the basic elements of a social éystém have been
defined and a long list of terminology and notation has been
introduéed, some elucidation might be gainéd bﬁ iurning to the

~connotation of the tefmé above. What the formalism of a social
system S in 2.1.2-3 roughly améunts to can be expfessed in ptain
language by deséribing the personnel A and fhe typical feasibility
‘transformation t,

The personnel A can be understood in terms of its ;ypical
member o. The typical behavor d hé;'its individ@al "tasteS",
which are in the form of a (complete) prefereﬁee ordering
represented (in order-preserving fashion) by the utiiity
function u, .. In general, the utility achieved by o depends on
both its own behavior X, and the (a—egclusi@e) behavior x* of
'all others in A. Furthermore, it may depend o a.real number
pa ¢ R, where Py is to be understood as either income_or
wéalth, or status, prestigg? power or any compasite of things such

as these which can be expressed suitably in real numbers. The
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operation of o cdnsisps of choosing a behavior, i.e., behaving,
so as to optimize subject to the cqnstraint of its feasibility

and subject to its "perception" of the circumstances. This

— -

"perception"” is expressed summarily by the impression function
hy and the interpretation function i . "Observing” a collective
behavior x € X, it is assumed that o "sees" the component

Ty (x) =-xa of x pertaining to itself as is. Although the
o . .

- . o
component pertaining to the rest of A is w, (x) = x , however,

X
o

a's impressiop ha(xa) may very well be differént.from x%. Just
as the equélity ha(xa) = x%* need not hold, neither need the

equaiity ia(ga) = g, be éatisfied. Thus o may "intefpret" the
incentive function g, to be some different incentive function

. o -
ga # 8, Now x , u,, hg, gy and iy all influence the choice

x.amade by a. Given an a-exclusive behavior x%, o forms an
o

impression hy(x*) = y®. Having interpreted g, as'ia(ga) = By»

the real number r, = g,(x,,y*) is understood to be forthcoming

as a function of the choice x,+ Thus, ua(xa, v, ra) depends

on this choice, both directly and through r,. This partly

defines the 6ptimization problem for which a is to compute
a solution. - |

The probleﬁ!to be solved by o is, in generai, one of
constrained optimization. That is to say, apart from the fact -
that ya is now fixed, alréédy imposing restrainté on the wvalues

that can be taken by u, in the present computations according
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'

to that ya,'the choice of behavior xd is'cpnstrained to be

withiﬁ\a certain set dacfxa. This set, cal}e@ a feasibiii£y,
is determined by the feasibility ffansforﬁation t& . Th¢
operation of a is.completei&xdqunibed by sayiﬁg that it
identifie; the set a(xa, da) of behaviors X, éidd which
maximize ua(';.ya, ga(., ya)) on da.'(If S is weii-definéd,
then a(xa, dy) £ 6.) ‘Exactly one of these "best"” behaviors
X, € a(ka, d,) is chosen, it being immateriai.to @ - and to us -
which particular one it is.

Therfashion in which the feasibility traﬁékérmations
operate can be seen by assd;ing that a-feasibiiitQ'da is given -
for each o €A and that each a chooses a behavior ia e dy in the

manner already described: The collective behavior x ='H{xa?
arising in this way will, in general, now alter each feasibility

in the fashion described by t . Specifically; each d, is now

transforméd into ta(x,'d), where d = H{dS{B e"A}_eHD represents

A LA
the family of feasibilities, including that (d ) of o, which

3
as constraints, had governed"the choice of x. In general, the
equality ta(x,d) = d, does not hold, t, yielding certain
behaviors X, € da no longer feasible for o, while bringing
some behaviors z, ¢ du'into the new feasibility as elements
z, € ta(x,d).

The operation of all of the feasibility transformations is’
summarized in that of the “tollective. feasibility transformation t.

Given a colléctive feasibility T{d, € D |o e A} = d e D= TID
A C o o A G
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which consists of collective behaviors zeX such that Ty (z) ¢ da
o e}

(a € A), and given a collective behavior x such that

"%

x) ¢ é§a e A), t(x,d) =
o

n{t (x,d)|o eA}.
A ©
Thus, to summarize in natural language,a social system
is a céllgction of'behavors,»each'éeeking its seifeinterest
subject 'to an incentive function and guided by its individual
preferenqesa by its interpretation of its incentive function
and by its impression of the others' behavior, and subject
also fo a feasibility - which feésibiiity, in turn is
influénced by a history of past (gollective) féasibilities and
(collective) behaviors chosgp within theSé pastvfeasibilities.
The remarks so far in explaining the operation of
fe@sibiliﬁy transformations should yieid the motivation for the

following definition, as well as the definition itself, rather

clear.

.1.5 Definitjon: Let S be a social system and t the collective

feasibility transformation of S. S will be called (a) static

(social system) iff t is a constant map, i.e., t(x,d) = d for all

x e Xand d e D = HDa . S will be called (a) dynamic (social
. C A -
system) iff S is not static.
It is impbrtant to know that 2.1.2 is not a self-contradiction,

so that there exists an ordered seven—-tuplet S satisfying the

definition of social system. Although that may be obvious, it

is also important to know a reasonably unrestrictive sufficient
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condition for S to exist. Such a condition'will be given immediatly

the following conventions are agreed upon.

Standing Topological Conventions and Terminology: Whenever

R is considered as a tbpoiégical space, it Wiil,be assumed
to have the order topology of the natﬁral ofderhéf real
numbers. (Recall that fhis is the same as the Euclidean
topolog§ for R.)

Following Bourbaki [1966)], a topological épace will be

called quasi-compact iff the Borel-Lebesque condition is

-satisfied, i.e., every.open cover has a finite subcover.

A topological space will be compact if it is quasi-compact

and Hausdorff.

A real-valued function u: X > R on a topdlogical space X

will be called upper semi-continuous (usc) iff v ({r e R|r>b})

is closed for all b € R; it will be called ldﬁer semi¥continuous

(1sc) iff h”l({reR[r < b}) is closed for all b e R.

A point—tofset‘mapbing F:X > Y of a topological space X

into a topological space Y will be called upper semi-continuous

-(usc) iff F:X » [Y] is continuous with the upper semi-finite

" topology on [Y](see 5.1.2 or [Michéel, 1951]). Thus, F is

usc iff for each x ¢ X, and for each neighborhdod (nbd) V of F(x),

there exists a nbd U of x such that ®(U)CV.
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2.1.7 A Prbposition (Existence of §): With reference to 2.1.2-3,

each o € A (hence, A; and hence, é itself) is-wellldefined (i.e.,
S eXiéts as a social system5§ if,for each o € A, da € Da.apd

: y? £ ha(Xd),_da_is quasi-compact and ;a is uppef semi-continuous
on{y®}x d,. |
Proof:. Assume that the hypothesis is satisfied. Clearly, all

that needs to be shown is that a(x%, da) #¢ (x* € X°, da € D,,

o € A). Denote y* = hy(x*). Since d, is quasi-compact, so is
{y%}x d,. By upper semi-continuity of ﬁa on {yQ}x da.’ ;a_attains

a supremum on {y%}x d,. Hence, wa.attains a supremum on {x%}x da'

Thus, o(x%, da) # ¢, as to be shown.

2.1.8 Note (Preference and Incentives): As remarked ih 2.1.4,

the utilify functions u, are meant~to be order-preserving
representations of complete (preference) orders of the
behavors o onAX X R. Meanwhile, the functionsiga have been
called "incentive" functions to the effecf thaﬁ the real
" numbers r £ R serve to order the incentives, indicated as tﬁe
values taﬁen by any ga . To justifv this uéage of:fincen;ive"

it is assumed from here on that, for any x € X and anyv a € A,

if r and s are real numbers such that r < s, thenlua(x,r) ﬁ_ua(x,s).

This is to say that, ceteris paribus, a behavor does not prefer



less of the-real-valued variable (incentive) to more, without

implying that more is actually preferred to less.

16
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Games, Economies and Social Systems .

Haviné introduced the fopmal;notioﬁ of a social system, it ig
appropriatelnéw to compare this with the more‘faﬁiliar nofioné
of an ecﬁﬁomy and.a game. This will give aipefspéctive within which
the place of the present study might better bé‘j;dged.

The notion of an economy which will be used;iﬁ this comparison
is that'of Arrow and Debreur(1954), although it Qiil»be presented
within the pfesent terminology and notation. Thiskié proper
enough éroceéure, for it wili;urn out that an e?éﬁomy - -or
an "abstract economy” as Arrow and Debreu callea.it - is a special
casé of a social system and that a game is a special case yet

of an econmomy. All this will be very clear as soon as the

defintions are given.

Definition: An economy is an ordered’quadruﬁlet

S = <W, ﬁ, %, A >, where

(2;2.1,1):7 W is as in.Z.i.Z.l; from which Xiand Xa are
‘ : defined as thefe;
(2.2.1.2) U=1{i :X>Rloec A}
is an associated family of realf§alﬁed fﬁnctions‘

By defined 6n X;

(2.2.1.3) T = {Ea:xa > [Xa}]a € A}
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-1s an associated family of mappings Ea assigning

a non-empty subset'fa(xa) of X, to each x% ¢ X%

(2.2.1.4) A= {a:x® x t (X)) > [X,]]a € A}
. is a self indexed family of mabpiﬁgs defined By

a(x®, d,) = {xa £ du]ﬁa(xd, x%) > Sup Uy (v x*)},
Yo € dy

o S
(x" e X%, dy € t, (X)),

2.2.2 Defimtion: A game is an etonomy in which Ea(xa).= X, for

all x® & X%and o ¢ A.

2.2.3 ‘gggg: The actual definitions of Arrow and ﬁebfeu (1954) from-
which 2.2.1-2 is generalized actually has A as a finite set,
but given more recent developments (Aumann, 1964) in which
a continuum of traders (players) ié considered, it is unreasonable
to stick to such a restrictién - a restriction which is
unnecessary in the first place, except possibiy to yield

_economics understandable with the tools of Euclidean space.

A simple comparison of 2.2.1-2 with 2.1.2 yields:that, indeed, an

economy is a special sort of social system and that a game is a

special case of an economy. This notion of a game may or may not

be apprOpriate. It does have the authorization of Arrow and Debreu,
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however, and that should carry some weight. In any case the above
defintions 2.2.1-2 will not be used to derive any results of this

study, but afe_recorded merely for the comparison they allow.

Coming tp’that comparison, it is to be noted fifStly that the

elements H, G and I of a social system have been suppressed in
2.2.1. Hence, the functions Ea, as is intended to be suggested by.
using the notation Qf umlaut ('"'), are analogous to the effective
utility functions ﬁu of 2.1.3.10, but not necessarily such, since
they are not explicitly derived from functions uy, hg, gaAand iy as are
the functions Wy - Finally, the mappings Ea of 2.2,1.3 are restricted
versions of the feasibility transformations-ta of 2;1.2.6 and‘2.1.3.8.
The Eu 's depeﬁd only on a-exclusive behayiors x%. The t, 's
are ailowed to depend, in addition, on ﬁhe.behaviorvga of o as well
as the collective féasibility d in D = IID,.

| All this being so, the restrictioni of 2.2.1 maylbe viéwed in
b.differeﬁt lights. Accordingly, one'Qiew‘might be that the
economist is not interested in\the details of the full-blown social
system and it is a usefﬁl simplification to suppréss the perceptive— 
cognitive and infofmation—systemic elements for which-H and I stand and
that fhe-incentive_géheme - which is_aséociated with G - does not
matter. Béfore turning to the simplification of the feasibility
transformations t, to the form Ea , it is worth challéqging'the above
view. For to éay that economisfs are not‘concernéé'with incentives

wouldbe to say that they are not concerned with prices - wages included -



20

or with taxeé and subsidies - incentives for investment, etc.,'
included. And to say that they are not interested in the effects

of imperfections in information or in its processing by the user,

e.g., in the "marketplace", would imply stateﬁenté to the effects,
for instaﬁce, that a devaluation can be énnounced-é Qeek earlier

than it is consummated or that advertising has vet to be invented. It
is very difficult, therefore, to dgfend that ignorning the elements
H, G and I is a useful simplification or idealizatiénin the genre

of the "ideal gas" or the "billiard ball” model of gasses.

The simplification of the feasibility transformations t, to the
fomt, is also a difficult one to defend. For one thing, what is
feasible for an economic _agent obviously depends on the‘behavior
- of that agent itself. It would require some rather strong meﬁaphysics‘
otherwise to explain why people or firms or governments choose to save
and invest if tomorrow's vacations, factories and parks did not
depend on whether one saved a penny or built a fgc;:ory or upkept a
‘park today. Secondly, the factoriés one th‘toﬁorrow depends on
what factories one has today. For instance, one:ailows the textile
'industrylfo §low1y depreciate its equipment and invests in the
electronics.indusgry. The production ﬁossibilities set of tomorrow
depends on the éfesent one and on the point now cﬁosen in it. That
. is to say, tﬁe feasibility for the agent o depen&;on xaand da'

z
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To include certain external effects, it is here permitted to
depend on the feasibilities dfgof the other agents B c¢A as well,

(To give a possibly odd example for where this may become relevant,

it might be considered that the precedence set by éllowing one boy

to be a conscientious objector to war, whether or not the bov uses

this priviledge, will probably make it easier for the next boy to
gain this choice).

The result of the above discussion seems to be not really that
an economy is a special case of a social,system)'but'that this would
be so if one went by the definitions which were compared. But the
result is élso that this would be a very arpificiél'exerciSé of
classification and that a social system, as definéd by 2.1.2 is really
something dear to the interests of economics. In its formal
specification, nevertheless, it is more general than the econoﬁy
for which Arrow and Debreu proved the existence of‘én equilibrium.
It will be found then that thé equilibria proved in 4.3. to exist
in the case of dynamic social systems generalize the result of
Debreu (1952) obtained for a certain special class of social systems.
The mentioned work of Debreu is actually the main mat@emafical
piliar on which the éutstanding Arrow and'Debreﬁ study is based,
tﬁe social systems-freated in it being correspondingly specialized.
(Typically, both works deal with a finite personnel and with behaviors
ig Euclidean space, and these cgnstitute a further festriction on their

results. Although a preference to work in such spaces is often thought
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to be''realistic" (perhaps.because it is "less aﬁé;ract"); as far
as realiséiis concerneé,'any result which is t;uéhwith Qeakér
assumptions is at least as éealistic as the same result with st;onger
.assumptions: Furthermore, it ig_nqt.possible toigépresent, for
example, an infinite—hdrizpn plan naturallv as éxpoint in fiﬁite
dimensional space, its natural habitat being infin?te dimensional.
Hence, for this and many other reasons, neither is.it the case that'A
all economics can be reasoned in Eucliden space;)’a{

The ﬁdét:summary comparison of a social systéﬁ with a game,
to end this section, would be that the latter is éﬁétié (see’2.1.5)
Thus, fhe existence.result of Z:Z can be regardéd'as a»generalizaéioq
of Nash's t1950, 19511 result for (agaiﬁ a‘restrigtéa variety of)

finite-personnel games to the case of a certain class (type 0) of

static social systems.

.
XA
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TOPOLOGICAL FOUNDATIONS OF SOCIAL SYSTEMS

This chaéter first'presents some mathematics,-mostly topology,'
which is especially useful in.the analysis of socialisystems. In
one way or another, all of this material is actually used in the
present stﬁdy, but much more can be expected from its use than
would fit within the constraints of thié investigation. Furthermore,
most of.the material is either new to the field of social analysis
or plain new, As best as én aé;teur historian can do, the
'drigins and intellectual history of the material are indicated.

N;xt, some fundamental topological properties of behavors -
and, thus, indireCtly of social systemé - are demonstrated as
deriving from various properties{ if they pertain, of elements
suéh as utilit§; impression, interpretatibn and incentive functions
and behavior spaces. These are demonsfrated firét for static and

, . i
then for dynamic social systems.- They are used in the corresponding

theories of existence for social equilibrium, presented in the next

chapter.

.
AN
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'Topologiéal Preliminaries

This section collects soﬁg topological facts crucial to the
later sectiéns and chapters, so that they may be used freely
without explicit reference once they are recorded. Most of these
facts relate to hypefspaces and to real semi—lineér topological
spaces (rst>spaces).

The idea of hyperspace, i.e., a topologicai space whose
points‘are subsets of a topological space, dates at least as
far back as the metric defined by Hausdorff [1937]-0n the set
of non-empty closed subsets of a bounded metric spaée X.

(seé also [Kelley, 1942] for a study.of the Hausdo%ff metric

hyperspace when X is compact.) Meanwhile, Vietoris [1923]

defined the finite topology (see 3.1.2,10) for the set of non-

empty élosed subsets of an arbitrary tépological space X.
The standard reference adopted here, however, is the complete
and unifying study of Michaél [1951].

The importance of hyperspaces for optimizaﬁibn; ecoHOmic
theory and social analysis in general derives from at least
two consideratio;s. Qne of thesé in turn derives from ;he
importance ofvpoint~to—set mappings-in these fieldsf For a
point;to—set mapping, such as an optimizing algoritﬁm,a éonsumeg '
choosingvbundles of goods oféa behavor. choosing é_set of behaviors,

can be looked upon as a point-to~point mapping on the same domain
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of définition into a suitéble hyperset (set of subséts) of the range. If
the domain and range of the point~ﬁd—set mappings are topoloéical spaces,
then matters.;elating to the (upper or lower semi-) cbntinuity of this
mapping are often simplified by appropriate choice,pf a.topology for the
hyperset serving aé range’for the associated point~to-point mapping. This
is a primary usérmade of hyperspaces in this .study, as 3.1.4.4-5 and the
~application of these in 3.3.1, and thus in each of the results of 4.3,
constitute such a use,

These mentioned applications in the present sfudyvalso illustrate
the second general use of hyperspaces for the mentioned”fields of
inquiry. The consideration here is that "feasible régions"_can be
regarded as_points in a hyperspacej‘sé that changes in these can be
analyzed by use of point—-to—point mappings (aﬁd even, éslin 4.3.3.3f5,
by use of‘point—to—set mappinés) into that hyperspacg.' The power of such
methods will probably be felt 1ess_in optimization constrained to
feasible regions in Euclidean space (especially when thé constraints
are finitely parametrized, as in the case df linear constraints of budget,
etc.), but in dynamic optimization where éecisions takeﬁ are allowed to alter
the very feasible regions within which they are taken - as in the case of
(dis-)investment - apd especially when the feasible regions lie in some
abstract spacé, such'ag a function spééé, and the const;aintslére
not finitely parametrizable, these mefhods may.be expgcted to bear fruit.

Even a restriction of the results in 4.3 to the case of a singleton

personnel might testify to the walidity of such an expectation.

L
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Semi-linear topological spaces, and, mofe generally, semi-
linear spaces weré first investigated,.go the knowledge of_.
'thié author, by frakashvand Sertel [1970, é,b]._ As a generalization
of linear (or vector) spaces, semi-linear (or sgmi—vector) spécés
have an algebra which»is satigfie&;’notéﬁly for present purposes, by
the set of all non-empty subsets of a vector space. In the case
where L is a linear topological space, the set of non-empty quasi-
compact suﬁsets of L form a semi-linear space. Among semi~linear
topological spaces, thbse.which are used in this étudy are the
onés formed by the Hausdorff metric space of’non;empty compact
and convex subsets of a normed real linear topological space.
Thus, the usual feasible regions in usual constraihed optimization

" are .typical points of such a_(rst) space.

3.1.1 Standing Notation: For any topological space X, C(X) will
_.dénote the set of all non-empty closed subsets of X;‘k(X)
will denote the set of all non-empty quasi—éompact subsets
of X, and K(X) will denote the set of allinoneemﬁty'compact
subsets of X. If X is a convex set, 0(X) will denote the
“set of all non-empty convex.subsets of X. Fur;herﬁore, coX) =
c® Mo, k0 = kX " 0), ete., will also be used.
If f: X 4KY is a mapping, then F(f) = {(x,y)lx € X,
y € £(x)} € X x Y will be used as standard anétion for the

. graph of f. Z
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3.1.2 'HzEersBaces: This section follows [Michael,-1951], éxtracting
the bare minimum of information needed for the subsequent

development.

3.1.2.1  Notation: Let U C X. fﬁén denote

<>t

{¥Ye[X1]Y c U},

[

<> = {Ye[X1|Y" U # ¢}.

" Let {U,|i e I} be a collection of sﬁbéetélU C X. Then
1 . - N . ¢ .

i
denote

<u i€ 1> = {Ye[x]|YCUUy, ¥ Ny, #¢ for all i e I}.

If I above is finite, so that {Ui[i E'I}.é~{U1""’un}’

then also denote <Ui’i e I> by <U, ..., Un>.‘

'3.1.2.2 Definition: Let X be a topological space wifh topology T.

The upper éemi—finite'(usf) topology on [X] is the topology

generated by{<Uﬁ4U_% 1} as a basis. The lower semi-finite

(1sf) topology on [X] is the topology generated by

{<U>"|U et} as a sub-basis. The finite (f) topology on

[X] is the topology gené?atea by {<Ul, ...,'Un>J{U1, cees Un}CT}.
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Remark: Using 'c' as a superscript to denote complements,

the following equations follow easily from the definitions:

(i) <t = <o —=-[y] = (<UC>’)C,
(1i) <> = <US€ |
(iii) <v>¢ = <x, U

The following spells out, for the benefit of fhe reaaer, a proof for

a propbsition observed by Michael.

3.1.2.4

N

Proposition: Let X be a topological space. The finite

topology on [X] is the coarsest topology, in the lattice of

Aéll topqlbgies on [X], which is finer than both the usf and

the 1sf topology on [X]. tMichael, 1951, p. 179].

Proof: It suffices to show that the usf and the lsf topology

~on [X] are contained in any topology containing the finite

_ topology on [X]}. From the first equation of 3.1.2.3 it

follows that the usf topology is so contained. Let UC X
be open. Then, using the last two equatibns of 3.1.2.3,
< = Wt = <X,U> , proving that the lsf topology is

also so contained.

¥
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The purpose of the following is, again, elucidation.

o

3.1.2.5 Proposition: Let X be a topological space, and denote the

usf, 1sf and f topologies, on [X], by T+,T-, T , respectively.

Then

’
(i) 1t is the coarsest topology on [X] for which (a)
<ust is open if U is open in X and (b) <M~ is closed

if M is closed in X:

(ii) T is the coarseét topology on [X] for which
(a) <U> is open if U is open in X andv(bj >t is closed
if M is closed in X;

~

(iid) 1t~ is the coarsest topology on [X] for which

(a) <U>is open if U is open in X and (b) <M>is closed
if M is closed in X.

+ and

Proof: It follows direétly frém the definitions that 1
T aré'the coarsest ;opoiogies in [X] satisfying parts (a)
of (i) and (ii), respectively. 1In the following let UC X
be open, and w;i.g;, let M = US, 1t sufficeé'éo show that parts
(b) of (i) and (ii) hold fér <t and ff, respectively, for then
(iii) will f&llow by 3.1.2.4. To see that (i)'(b) holds for

T+, just note that

T = (< he,
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which is closed since <U>+ is open. To see that (ii) (b)

~

- . . + . _ . C
holds for t , note, similarlv, that< M> = (<II> )c is closed.

The resﬁ of this sectiop following the‘ﬁresent paragraph,
with the possible exception of 3.1.2.9 is merely paraphrased
“from [ﬁichael, 1951]. - The first definitioh.éives a useful
equivalent reworﬁing of the usual definitian of uppar and
lower semi-continuity for multi-valued binary relationsr
(poinf—to~set mappings). The remainder wili be useful after

the next section introduces a special rst space which is a

hyperspace.

Definition: If X and Y are topological spaces; a mapping'

F: X 5[Y]Ais called upper (lower) semi-continuous (u(l)sc)

iff F is continuous with the u(l)sf topology on [Y].

[Michael, 1951; p. 179].

The last definition can be reworded also as follows.

g;ogositiqgj" If X and Y are topological spaces, then a

function F: X » [Y] is u(l) sc iff {x e X|F(x)nA # ¢} is

-closed (open) whenever A is closed (open) inuY.'[Michael,

S

1351; Thm. 92.1]
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3.1.2.8 Definition: Define the ("layout...) map {...of X")

L:[[X]] = [¥Z] by

Lz e[x]li e 1 )= vz,.
S 1t

[Michael, 1951; Def. 5.5.1]

3.1.2.9 Proposition: If X is a topological space, then the layout
.map of X is (i) usc, (ii) 1lsc and (iii) continuous accordingly
as [X] and [[X]] carry the (i) qu, (ii) 1sf; and (iii) finite

topoiogy (cf. [Miéhéel 1951 Thm. 5.7.21).

"froof: Denote generic elements of [[X]] by E, and defin-
‘ je J, iff Yje E, so as to be able to write E ='{Yj|j € JE}.

The proofs of (i) (ii), (iii) are entirelvy set-theoretic.

ad (i): Let V = <U>+ be a basic open nbd of Y = L(E) ¢ [X].

It suffices to show that Ifl(V) = <V>+:

Ee 171 (V) iff ij =YeV
) Jg

iff YCU
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$ff (€ 3, only if Y. CU) .
~ i
iff (f € 3 only if Y. € V)

iff ECV

iff B e <wt .

ad (ii): Let V = <U> be a basic open nbd of Y = L(E) ¢ [X].
It suffices to claim that 1 W) = <V>—, add to show it as

follows:

Ee1 t (V) iff Ye V
ife Yy Nu ¢ ¢
iff (3, e J_ such that Y, Nu # &)
’ J* E j*

iff (3. e J_ such that Y, € V)
( ‘J* E B J.* .

iff ENV £ ¢

iff E g <V> .

ad (iii): Let V = <Uy, ...,'Un> be a basié.open nbd of

Y = L(E) € [X] and denote N = {1, ..., n}, U= UUi and
N
W =<<U>+>+f‘(f‘<<Ui>“>"). It suffices to show that
N _ :
iy = w

e

Eert (V) iffYevV o
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iff YCU and Yf‘ui #¢ for all 1 e N
16f (j € J_ and i € N only if Y,CU and YOU# )

: + -
iff (j EJE'and-i”€ N-only if Yj-€<U> and Y€<Ui> )

iff Ee <<t>' > and E £t >7>7
N o1

iff E ¢ W.

3.1.2.10 Notation-Definition-Remark-Proposition: Replaée [X] in

3.1.2.1-9 by C(X) and modify 3.1.2.3 to state that <U> = C(U)

if U is closed in X.

3.1.2.11 Proposition:

1. If X is arregular space and Eve'k(C(X)) with the usf
topology‘On C(X), then L(E) ¢ C(X);'

2. If X is a topological spacé and E € k(k(i)).withithe
usf topology én kX, thén L(E) Elk(X).

[Michael, 1951; Thm. 2.5.1-2, Thm. 9.5].

3.1.2.12 Proposition: Let X be a topological space, and let C(X)
be équipped with the finite topology. Then X is quasi*combact,
locally quasi-compact, separable, compact,iff C(X) has the

same property [Michael, 1951; Thm. 4.2., Thm. 4.4.1, Thm. 4.5.1,

Thm. 4.9.6].
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3.1.2.13 Proposition: Let X be a metric\sﬁaée. Then the finite

- 3.1.3

3.1.4

-

- topology on C(X) agrees with the Hausdorff'metric topology
on C(X) iff X is (quasi-)compact. [Michael, 1951, Thm. 3.3,

Prop. 3.5]. —

Rst Spaces: Rather than lengthen the present chapter by para-

phraSing or reproducing, the original work by.Prakash and

Sertel on semi-vector spaces, semi-linear topological spaces,

rst spaces and their fixed point properties is appended to this

study.

Special Facts Basic to Optimization: This section collects some

fécts relating to the continuity and convexity matters pertaining
to funcfionals typically playing the role of‘objeetive functional
in optimiéation problems. All of these facts afé well-known in
certéin restricted instances, as when the funétiénallié definea on
a subspace of Euclidean space. Thé novelty in the more general
facts presented here deriveslfrom the treatmeqt of the usual

feasible regions as points in suitable spaces. The various

continuity and convexity properties of the objective functional

are related through this treatment to corresponding properties of
i : ’

the optimal wvalue attained on a feasible region, depending on the
abstract feasible region.as a variable. Thus, e.g., the

supremum attained by an objective functional on, say, a compact

feasible region is seen to share much of the continuity and
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convexity prdperties-of’the objective functional itself;'althqugh
the supremum depends on the feasible region while the objective

" functional depends on a generic element of the space in wﬁich
such feasiblé regions lie as sets.-Such facts are essential .

when the'f;aéible regions become endogenous §ariab1es of the model,

as in dynamic optimization or dynamic social_systems:

First comsidered are matterslof continuity. The first lemma,
3.1.4.1, plays a key role here. While 3.1.4.1f3.are concerned with
the objective functional, the two simple proposifions 3.1.4.4-5
are relafed in an obvious way to the feasiBilitg.,.Then

considered are the convexity properties, relating, again, to the

objective functional.

~

The'main results are all concerned with ﬁow continuitv,

-convexity - and various weaker versions of these properties.—

for the objective functional teiate to’correspondiné pfoperties of
the associatéd "supremun" or "infiﬁum functionélv; The results

are presented in "disaggregated" férm, that is, continuity questions
are split intp questions of ﬁpper and lower semi-continuity,

and convexity or concavity matters are formulafed‘in terms of

strict and non-strict versions and in termS(f-(éfrict and ﬁqn—stfict)

quasi-convexity or quasi-concavity.

3.1.4.1 LEMMA: Let B be a closed set in a compact (Hausdorff)

o~

space X X Y. Define
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o
I

=ty e c® x Y[k xGHT B},

-

=1
it

{k,y) e cX) x Y|k x{yDnB# ¢},

and assume that C(X) has the finitetopology. Then

1. D is compact in C(X) x Y ; and

. 2. E is compact in C(X) x Y.

y

it is clear that all of these are compact. Furthermore,

Proof: Denote Y* = 7_(B), B = BN (X x {y}), B*, = 7 (B );
—_ y ol By T . x YT

C(X) x Y is a compact (Hausdorff) space when C(X) has the finite
topology, as C(X) is then compact (Hausdorff). (See 3.1.2}12).

Hence, it suffices to show that (1) D and (2) E are closed.

ad (1):-There is nothing to prove if D = C(X) X Y, ‘so

‘let A € (C(CY) X Y)\D. Denote Dy~= <B*_>x {y} and generic
elements dy = kk,y) € D&(y,e Y*). vThen A and dy are

distinct for each dy € D. Figing y € Y*, thepé thus exists an

. open cover {W(d,)| d, € D_ } of D, with open boxes
y/l Gy & Ty 7 OoF By FEER OPER

Wyldy) = Ug(k) x Voly), (dy € Dy),

.and a family {Ny(dy)ldyée Dy}of nbds Ny(dy)ci CX) x Y of
A, such that for each d? € Dv, Wv(dy){\Ny(dv) = ¢ (where

Uy(k) C C(X) is an open nbd of k and_vy(y)'c Y is an open
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nbd of y). Since <B*y> and {y} are compact, so is D, .

Eengf, {Wy(dy)l dy € Dy} affords a finite subcover

i :
W@y = vbxvili=1, ..., n(m}.
'y v y y - o7

Define Vy = Vy £ +..N Vm‘?)r,,

L 1y m(y)
and_Ny Ny(qy)(\, ...(‘\Ny(dy ) and E

i
UY

i . oy
Wy X Vy (1i=1, ..., m(y}?i

Then {Wy[i 1, ..., m(y) } is an open cover of Dv.such that

.V"‘ i - . - ‘.‘, '--
_ WynNy $ (i 1, e m(y){).

Noﬁ_{Vily € Y*} is an open cover of the compact Y¥,

affording 4 finite subcover { V., ..., V } . Define
. : . yl : Yn :
N .
CN=on Ny . TheaN 1is a nbd of A which is disjoint from
3=1 73

S 1 . T
W =(;{wy 4 =1, ..., m(yj); =1, ..., n} .

Since DC W, NnD = ¢ . Thus, D is closed, since its

complement in C(X) x Y is open.
ad(2)! To'show that E % closed, note that

E= UEEDSHE x {y)
. Y* y

and that E

y = (<(B¢)c>+)c % {y}= <B% >7 X{y} is closed, hence

y

)

compact, for each y € Y*. Then the proof of (l) applies, merely

by replaciﬁg<B*y> by'<B*y>—, Dy by’Ey, D by F and dy by ey.
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Lemma: Let X = Xa x X* be a compact (Hausdorff) space,

let u: X > R be continuous, and define the real-valued

functions i, u on C(Xa ) x X% by

alk, %) = Sup u(+,; x%)
K, 1
| | Ikas c(xa), x% e X°‘ .
u(k , x*) = Inf u(, x%
ulk, :
ko

Assume C(Xa) has the finite topology. Then

N

1.1. u is usc iff u is usc,

2 u is lsc iff u is lsc;

2.1. u is usc iff u usc,

2. u is lsc iff u is lsc."

Proof: Upon noting that X is Tl’ it is obvious that continuity
- a , =

properties of U or E_hold also for:u,Asince a continuity
property holaing for @ or u on the whole of C(Xa) x X% also

holds on the subspace {({Xa}; x*)} , while this subspace is
u

hdﬁeomorphic to X and u = u = u on this subspace, All the

) -—

implications 'if' are thus proved.
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To prove the rest, let p €.R be arbitrary, and

denote P* ={re le >p} , P ={reRlr<p}, uwleh)

1

= Y, i) = 37, w1t = B, §leT) = oo, w1ty = D,

Efl(P") = E~. From this dotatioh, it is clear how to use the

: ‘ + s ,
last lemma, observing that B is closed (compact) if u is usc

and that B~ is closed (compact) if u is 1lsc. Thus, in case

_of~l.1.;D+ is closed, so that u is uscj in case of 1.2, D

is closed,so that U 4is 1lsc; in case of 2.1, f+ is closed; so
that @ is uscj in case of 2.12, E is closed, so that u is lsc.
This ;ompletes the prooftﬂ
) .#
Corollary: Using the definandavand notétion‘éf_the last
lemma, among the following statements i.a, i.b and i.c

are eguivalent (i =1, 2, 3):

1. a. u is usc.

b. u is usc with the finite topology on C(Xa)'

¢ u is usc with the finite topology on C(Xy) -

2. a. uis lsc.
!

e
[
]

b. wu is lsc with the finite topology on C(X,).

c. u us lsc with the finite bopology on C(Xa);
3. a. u is continuous?

b. is continuous with the finite topology on C(Xu)'

e
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.

c. uis continuous with the finite tbpblogyon C(Xa)'

Proof: All is plain as a rearrangement of the last lemma.

#

The form in which 3.1.2.9 will actually be used (together
with 3.1.4.5 in proving 3.3.1) is actually the following simple

b

proposition, needing no proof.

3.1.4.4 Proposition: Let X be a topological space, and define the map

L [X] > X by

2(E) ={x|x ¢ E} (E € [X]).

’

Then £ is usc (Isc) with the usf(1lsf) topoleogy on [X].

3.1.4.5 Proposition: The graph I'(1) = {(E,X)IE e C(X), x e E} ¢ C(X) x X
is closed if X is regular and C(X)Vhas the usf topology.

Proof: To see that the complemené of;f(z) is open,let Fe C(X)
and y € X\F. Since F is closed and X is régular, there
exist disjoint open séts U, V C X such that FCU apd veV..
Then <U> is open with Fie <U>(:C(X),'and (<ﬁ>‘x nwnr@) = ¢,
showing that T'(f) has open complement.

#
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Inthe rest of the section attention is directed to matters

of convexity of u, u, and u.

3.1.4.6 EEE@Q" Let L, and 1% bexéeai linear topological spaées
and, with reference to 3.1.4.2-3, let x* € KQULY), X, ¢ KL ),
and assume u to be continuous. Then u hasvany of the properties
under (1) below iff @ has, and u has any of the properties

under (2) below iff y has:

1. a (strict) quasi-concavity,
b.(strict) concavity,

c.linearity, i.e., concavity and convexity:

2, a.(strict) quasi-convexity,

b.(strict) convexity,

c: iinearity.
Proof: The 'if' parts of the propbsition,are.all obvious'
upon ﬁoting that singleton subsets of X(x are closed, and that the
collection of tﬁése is convex. The '0ﬁ1§ if}-parts are all
straightéorWard, so only (1.a) will bé freatéd; imitation will
yield the remaining proofs.

Let "A=1 - A ¢ [011], let (ka’ x*), (fka, 'x%) e C(Xa) ;<Xa,
and let X, € ka and 'xdfg 'ka with u(xa, ka) = E(ka, x%) and

u('xd, %) = ﬁ(‘ka, <y, Finally, denote Eu = Ak +'A'ka,
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¥ = A%+ "A'x* and’'®¥ = Ax_ + 'A'x . .Then u (K., T%) >
S . o a o . o -

- =0y . s o
u(x, , X¥7). If u is quasi-concave, then

u(;a 3;((1) > Min [U(Xﬂ, x(,l)s u('xds' !xd‘)]’

whereby U is quasi-concave also; similarly, if u is strictly

quasi-concave (i.e., the last inequality i$ strict), then

u, too, is so.

#

3.1.4.7 Remark: From 3.1.4.2.-3, it is clear thét‘3,1.4.6 can be

3.2

~stréngthened by assuming only that u is usc for part 1l-and

1sc for part 2.

Topological Properties of Behavors in Static Social Systems

From a narrow viewpoint, the prime motivation for recording the

properties collected in this section is the existence theory for

equilibrium in static social systems, presented in 4.2. The end

.of the proof for an existence theorem for social equilibirum, however,

marks just a beginning for social analysis, no matter how general
and powerful that existence theorem. The properties enjoyed (or
suffered) by behavors in a social system - statie or dynamic -

deserve consideration, therefore, as main building blocks of social
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analysis, rather than merely as stepping étones useful only
for proving an equilibfium existence theorem. For this reason,

the present section treats selected properties of behavors in

— -

some detail, restricting affgntion to the case of a static
social system. Actualiy, the properties 6f»a social system itself
are expressed quite well,‘as a rule, in terms of the properties
of its behavors. So the present section may be looked upon
also as é treatment of selected properties of social systems in
the static case.

To clarify what particular properties are gained for behavors
fromAWhat>properties of the behavior spaces, utility funqﬁions,
impression functioﬁs, interpretatioﬁ functions and inéentive

functions, the results of the preéent section are displayed in

.as "disaggregated'" form as is feasible here.

THEOREM: Llet X = X X X® be a compact (Hausdorff) space, let
f: X > R be continuous, and.let f:XOL -+ R be defined by £ (xa) =

Sup £(*, x*). Define a:x® > X by

a(x") = EMEICIP x ) 3'E(x°‘j’}.

Then the graph I'(a)CX of o is compact and, hence, o is uppef

. , . o
semi-—continuous witho(x ) non-empty and compact (xa e XM,

P
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3.2.3

Proofi From the continuity of f, it follows that Y = £(X) is
compact and, by 3.1.4.3, that fis continuous. Since R is Hausdorff,

the graph T(f) C X XY of fand the graph T(F) C X* x Y of T

“are then both closed, hence compact. Thus, Xa X F(E) is compact

and so is,(Xa'xF(f))(\F(f). B. Hence, the projection 7_(B)

X

% a(x® is

is compact. Ob?iously, (o) nX(B). For each x® ¢ X

non-empty by the compactness of Xa x { x*} and the continuity of

f; it is compact, si: = it is the projection ﬁx (X, x {x*HNT(a))
o

of a compact set., Finally, o is upper semi-continuous by

closedness ofl'(a) and'compéctness of'Xa , using Lemma 2 of

[Fan, 1952].

.COROLLARY: 1If the collective beﬁavior space of a static social

system is compaét and ﬁa is continuous - for (each) behavor o , then
(each) o has a compact graph and, hence is upper semi-continuous,
selecting a compact and non-empty choice set in its behavior

space in reaction to each a-exclusive behavior.

Proof: Repiace f in 3.2.1 by Qa'

#

COROLLARY: The consequetice in 3.2.2 holds if the collective
behavior space is compact and uy, hy and éa are continuous

Proof: If u , h and g ,are all continuous,
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i

3.2.4 LEMMA: Let Z be convex in a real vector spacé'and let g:Z >R -

.

u:Z x R > R be two real-valued functions, such that u is non-
decreasing in r ¢ R, i.e., such that for all er‘Z, if r, s ¢ Ry
and r < s, then u(z,r) < u(z,s). Define f:Z » R by £(z) = u(z,g(z)).

Then f is quasi-concave if g is concave and u is auasi-concave.

Proof: 1If Z is emptv, then there is nothing to prove. So let

z, z' € Z, A =1 - )" ¢ [0,1], -and denote % = Az + A'z'..Then

£(2) = u(z, g(2))

it

v

u(z, ag(z) + a'glz")

v

Min [u(z,g(2)), u(z',g(2"))]
= Min [£f(2), f(z")]. {

- F

3.2.5 COROLLARY: If the behavior space X, is convex in a real vector

) . o . .. . o . .
space and Y* = hy (¥7), then w, is quasi-concave on Xo X {ya} if
éa is concave on Xa x {y®} and da is quasi-concave on

Xy x (y%2 x g (X o x y*H) ° =ha(xa), e X%).

Proof: A direct application of 3.2.4.

3.2.6 COROLLARY: If, in addition to the hypothesis of 3.2.5,
X(}s compacf and convex in a real linear topological space,
and for each y% ¢ Y%, ém'and u, are, respectively, continuous

on X, x {v%}
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and upper semi-continuous on X x {ya}><éa (Xd,x{y@} ), then
a(x®) is non—empi:y, compact and convex for each % e x* .
Proof: Since X, is compact, so is X, x {y®}. Simce éd is

continuous so is éa (Xa x {y*}) compact. By the mame reason

. oS-
and the upper semi-continuity of Uy s W, is upper semi-continuous

o [¢)

on X X x

N e X¥. Thus, for each x® ¢ X% , W, attains

, for any x
a supremum s*(x%) on some (x*a, x%) € Xq x {x®}. Since ﬁa is

. ry : o o o= e, ; - o
upper semi-continuous on ?ax {x }», a (x%) {xm £ Xal v, (xa,x )
Z_S*(xa)} is closed, hence compact, while obviously non-empty

from the previous sentence, (x% ¢ X*). From 3.2.5 w., is also
s 3 o

quasi-concave on X, X {x%}, -so that a(x%) is also convex (x* ¢ X%).

#

Topological Properties of Behavors in Dynamic Socfial Systems

The present section is offered to serve the amnalysis of
dynamic social systems in a rolé anélogous to that: of the last
section for the case of statié social systgms.'Im~a:narrow-sense,
the'section'islaimed at the exiétence theory of eguilibrium for
dynamic social.systéﬁs, preseﬁted in 4.3, But'ﬁhé_facts recorded
.are actually of wider interest. |

As the last s;ction spells out - albeit for the static case -

how various properties of its behavors derive firom those of other

P

elements of a social system, the present sectiom avoids the

corresponding exercise in the dynamic case. This is in the belief
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that the last section provides an easy enough.modél to imitate.

The present section ban, therefore, afford to be briefer. -

3.3.1 THEOREM: Let X, and x% be compact ﬂHausdorff) spaces,

and let x;a:'XOL « X* > R be continuous. For generic k ¢ C(X )
: , -2 o a

and x% ¢ X%, denote %a = Sup W, (", x%*), and define

ko

v

e kol Wo(xy, x> W (kg, ¥}

a(ka? x*) = {x

Then,_taking the finite topoiogy on C(Xa)’ the éraph
r(a) & c(x,) x X* x X, is_compact and, hence, a is usc,
with each a(kaxa) non—empty and compact.

Proof: By continuity of W the set

o *

B = (g, x%, x, ,0)[r < ¥, (xq, x)}
is closed. By continuity of W, ﬁa is continuous, so that the
set
'F+(§) %‘{(ka’,xa’ r)!r_sz(ka, xa)}_
is closed also. Hence Bf\(F+(§) X Xa) is. closed. In fact, it is
compact as a subset of the compact C(Xa) X X* x X, x x'»ia(XOt x X%y,
so that its projection P into C(X,) X X% x X, is compact.

Now P is simply the set j?

P o={(ky, %%, x)[¥, (xy, x%) > W, 0, ¥}
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Pefining the map L':C(X)) x X* - X, by

ﬁw(ka,xa) = {xalxa e k,}, )

its graph TI'(L") C C(X,), x X% x X, is closed, so that

P T(L") is compact. Observing thatl'(a) = PAT(L') completes

the proof.

#

COROLLARY: Let L, and L% be real linear T, spaces, let Xy €
kQ(Ly) and let X% € KQL¥). Let ﬁd: Xyx X¢ > R be continuous
aﬁd gssumevthat, for each x* ¢ X%, %a is quasi-~concave on Xa x
{xa}f Defineo: CQ(XQ) X x“';‘xa, fof ganeric{k; e CQ(X,) and
x* e Xa, by

o

G.(ka, xa) - {xa € ka“.’ia(xas x(l)"?— %a(ka, xa)},

where ﬁa(ka? x%) =vS§p Wy (¢, x*). Then o is usc with compact
o 4
graph and with.each-a(k , x%) non-empty, compact and convex,
: : o’ « .

taking the finite topology on CQ(Xy).

Proof: All but the fact that each a(ka,xa) is eonvex follows
from the last thedrem, for a linear T1 space is certainly
T, (Hausdorff). Given any (kg, x*) € €Q(X,) x X%, the quasi-

concavity of ﬁa'on'xa x {x®} ensures the convexity of the set

{x, ¢ Xu|§a(xa, x%) ;_wa(ku,xa)}.
But a(ka, x*) is nothing.but the intersection of this set with

the convex ky, so a(k_, x%) is also ci¢nvex.
o . .

o
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EVOLUTION AND EQUILIBRIUM IN SOCIAL SYSTEMS

This chapter is concerned with equilibrium in social systems.
The notion of 'equilibrium' is briefly compared with those of .

'Pareto point' and 'core point' as treated in economic theory and

the'thééiy of games .- Equilibriﬁm points are theﬁ considered ‘

as fixed points of certain mappings, called "evolutions", representing
the way in which certain adjustment procesées operate for varioug
types of social system.

‘0f the five very general types of social systemlstudied for

the existence of an equiiibrium, the-first (type.O) is static.

The remaiﬁing types (I-1IV) aré«dynamic. All five types;’classified
according to various topological properties which‘they‘satisfy, are
unreshricted ih.the cardinality of their personnel, so that the
perSonﬁel can be finite, countably iﬁfinité or uncountably infinite.
The behavior spaces are compact and convex in locally convex

real linear topological spaces in the case of typevd-social
‘sjstems; they are compact and con&ex in normed real linear
topological spaces in.the case of types I-IV. For all five

types of social system, the set of equilibria is'shoﬁn to be
non-vacuous, coﬁpact, and, in certain cases, also convex.

Thefexistgnce result for equilibrium in the case of type 0

social systems is proved by‘uée_of (effectivelv a fixed point)
theorem of Fan (1952). In social svstems of typesiifIV, the existence
of social equilibirum is estg%lisﬁed By\applying a fiked point

theorem of Prakash and Sertel (1970 a) for certaiﬁ'(real semi-



linear topoiogical) spéces developed by these authoms (1970 b).
These latter existence results are extensions — obtamined by
encorporation of impression, incentive and ihterprettzation

schemes - of results developed by Prakash and Serﬁéﬂk(l970 c).

51
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~

Notions of Social Equilibrium

Of thé many different notions of 'equilibrium' that are

relevant to the study of social systems, those which have attracted
the most attention in the study of games and economies are three

kinds. Only one of these really goes under the name of "equilibrium",

although the other two "Pareto point" and "core point", are also
equilibria in a real sense and sometimes recognized as such. While
the present study is concerned mainly with the first of these and

it is the existence of equilibrium in this particular sense that

"is established in the other sections of this chapter for certain

types of social systems, the study=might gain perspective if the

relation between tﬁe mentioned‘threeikinds of equilibrium is
indicated. (To adhere to the most common usage, -"equilibrium"
will héfeafter‘be uséd to refer to the first mentioﬁed_of>these.)
To.define ‘equilibrium', 'Paretdrpoint'band 'core point' in
a fashion'that will ‘allow easy comparison, a few preparétory
definitions are in order. These become simpler in the case of
a gahe or; in génerar, a static social.systEm, since the notion
of 'adﬁissibilityw loses its importance in that case, as the
reader will notice for himself immediafely the definition is
given. The notion of 'blogking' by "coalitions" is'pivoﬁal for
the comparisoh between the tﬁree kinds of point (e@ﬁilibrium,

Pareto and core).
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Definition: Let A be the personnel of a social system S. Any

o LR .

non—empty subset B C A will be called a coalition of S, and

the notation X = IX_, X° = I X, D, = HD, DP= nD, will
B SN L T ANB®
be adopted with generic elements denoted as XB € XB’ X € XB,

_ "B B
‘dB € DB, a” e:D .
Definition: Let x be a collective behavior and d a collective

feasibility of a social system S with personnel A. The pair

(x,d) will be said to be inadmissible for a (o € A) iff

(d); otherwise, it will be said to
be admissible for aj; (x%,d) will be sald to be admissible for B

ﬁxa(%) =X ¢ dd = WD

a coalition of S,'iff (x,d) is admissible for each o ¢ B;

otherwise, it will be said to be inadmissible for B. (x,d)

" will be said to be (in)admissible iff it is (in)admissible for

A.

Definition: Let S be a social system, Let B be a coalition

of S, and let x = (xB, xB); d = (ds, dB) be a collective
behavior and a collective feasibility, respectively. If

the pair (%,d) is admissible for B, then it will be said

to be blocked by B iff there exists ?# € dg such that
.- B w R '
WS(YB’ X)) Z;WB (XB’ X )

holds for all 8 € B and
- - B % B
WB* (YB’ x) > WB (XB; X )

*
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holds for some B & B, If (x,d) is admissible for B, then it will

be said to be unblocked by B iff it is not blocked by B.

The notions of ‘equilibrium', "Pareto point' and 'core point'

can now be given pfecise meaning by the following defintion.

“4,1.4 Definition: Let x be a collective beﬁévior and d a collective
feasibility of a social system S with persomnel A, such that
the pair (x,d) is admissible. The pair (x,d) will be called

an equilibrium (point) of S iff it is unblocked by each singieton

coalition {a} A; it will be called a Pareto point of S iff it
is unblocked by A; it will be called a_core point of § iff it

is unblocked by all coalitions of ‘S. The equilibrium set of

S is the set of all equilibria of S. The Pareto set of §
is the set of all Pareto points of S; the core of S is the set

of all core points of S;

The comparison between equilibrium, Pareto.and'coré points of
a social system is now absoiutely clear. Simple but important
consequences of the definitions are that all core points are
equilibria as ﬁell as Pareto points, so that the core is contained in
the intersection of thé equilibfium set with the Pareto set.
Thus, the core is ;mpty when, for instance, S doeé not have

an equilibrium. In the later

)



55

sections of this chgpter,’sufficient coﬁditions‘are given
for S to have an equilibfium. Démonstrating sufficient
conditions for the Pareto'setygg the core to be

non-vacuous is a research probiem not taékled in this study.

Although it_cértaipiy will not be a survey of the

1iteratute, a brief sketch of the historylof the above ideas
will now be given. The idea of an eqﬁiliﬁrium point for a
competitive economy, in the Seﬁse of a price vector equating
supply to demand in each market, is commonl? attributed

to Walras (1881). Wald (1933-4, 1934-5, 1951) proved,

under rather restricted conditions, that an equilibrium
‘exists for each of a pure production and a pure exchange
economy. Arrow énd Débreu (1954), based on a study of Debreu
(1952), demonstrated for the first time the existence of an
eqﬁilibrium for a qompetitive economy in whiph‘production,
exchange and consﬁmption all take place, using less
strinéent.assumptions than those of Wald. One very godd
reason why a survey of the literature up to 1954 is not
'given~ heré is that the méntioned‘work‘of Ar¥row and Debreu
contains an excellent such survey. ' The e%istencé ﬁheorem
of Debreu (1952) for a social equilibrium (where, however,
the "social system'" is actually the same as that defined to

be an “economy' in Arrow and Debreu (1954) — see also section

2.2 of the present stﬁdy) is used in establishing the result
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of Arrow and Débreu (1954), and thaé fhéorem is itself based
on a corollary of the fixed point theorem of Eilenberg
and Montgomery (1946). Using Kakutani's (1941) fiied point
theorem, McKenziz(l955) oBtainquimproveméntg'on the Arrow
and Debreu study. All of ;ﬁese works used finite dimensional
methods. Thé§ succeeded in providing eéonomics with the
equi}ibrium whose various optimality and stability asbécts
had long been discussed and many worked-out'by‘a>long and
formidéble list of authors. Newman's (1968)Aexéeilent
collection is one good entry into the box of gemé to which
all of the above belong, ~

. The idea of an equilibrium for ;’game was first formally
introduced in some generality by Nash (19505'an& pféved to
- exist by him (1950, 1951), firsf by use of Kakutani's and
fhen by use of Brouwer's fixed poinf theorem. The game dealt
with was a finite personnel nOn—cooperative one with behavior
spaces (compact and convex) in Fuclidean spaces.

For information coﬁcerning the Pareto set,. the core and
the relations befween these and the equilibrium set, the
following sﬁort’list might provide a reasonable means of
entry into the associated game-theoretic and economic
literature: (Edgeworth, 1881), (von Neumann and Morgenstem,
1944), (Arrow, 1950) (Gillies, 1953, 1959), (Béndareva,1962)
(Debreu and Scarf, 196353 (Vind, 1964), (Aumanﬁ, 1964),

(Shapley, 1965), Scarf, 1967). Of these (Aumaﬁﬁ, 1964)
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-1

contains a short but illuminating discussion of»vthe development

of the area.



4.2

'

Evolution and Equilibrium in Static Social Systems

In this section an equilibrium of a static social system is

defined as a fixed point of a certain transformatiam called an

"evolution'", and a sufficient condition is demonstrated for the

4.2.1

existence of sueﬁ an equilibrium. The "static céntractual set",
i.e., the sét of equilibria of a static social system, is shown
to be compact if the mentioned sufficient condition is satisfied.
This contractual set is shown also to be convex if certain
linearity conditions hold which yield the effective utility

functionSlinear.

Notation and Convention: In the case of static. social systems

it is possible fo soméwhat simplify the notation adopted for

dealing with social syétems in general. Thié simplification is

permitted by the fact that the feasibility trqnsfbfmations tu of
a static social systeﬁ are all constant functions, fhe typical

t, assigning a fixed da C X, to every.poiﬁt in its-domain.

From this fact it is clear that no generalit& is lost by
;aSSuming da-.= Xy s 1.0, D, = {x,}, for all the behavors

o a.A. Taking advantage of this, the set T ¢ S can be fully

'lspecified and subpressed gy reﬁrésenting a static>socia1 system

S in the form <W, U, H, G, T A> . For, wheneve% a social

system is specified in tﬁ&s way, it.will be understood to be

static and the constant collective feasibility will be taken to be
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the collective behavior space X. In this case, since there
is always one constant feasibility da = Xa for each behavor

o € A, the behavors become simply point-to-set mappings

a: X% » Xa defined by
oy = g o b o
a(x®) = {x_ e Xalwa(xa,x ) > w (xM)},

where
. ‘Wa(xa) = Sup ﬁa(ya, x3) .

yaexd

4.2.2 Definitions: The evolution of a(static) social system
S = <W, U, H, G, I, A>.is a transformation E: X » [X] defined

for each x € X, by

EX) = 1 u(ﬁXa(x)).
A A .

4.2.3 Definition: The (static) contractual set of a static social

system S is the set C = {x € X|x ¢ E(x)}CX of fixed points
of the evolution E of S. A collective behavior x ¢ X‘is called

a (static)social contract or equilibrium of S iff x ¢ C.

4.2.4, Definition: A static social system S will be classified as
type 0 ("type zero") iff the following conditions are satisfied.

for each behavor o € A: =z
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)] Xa > KQ(Lu) for some locally convex real linear
topological space L, ¢

@ W, is continuous on X ‘and quasi-concave on X, x " [x%}for each

U

x% ¢ X%,

The main theotem, 4,2.6, of this section will be proved

by use of the following (fixed point) theorem.

4,2,5 THEOREM [Fan, 1952]): Let {La‘a € A} be a famiiy of locally

convex real linear topological spaceés. For each o ¢ A, let

X, € KQ(L ) and let X* = I X,. Let X = X and let
. o B8 a
~A\{a} A
{F(a){u e A} be a family of closed subsets of X. If,
for any point x ¢ X, and for any a e A, the setva(xa) € Q(Xa)’
o _ '
where x ﬂxa(x) and

a(x®) = my (T(a) N (X * (x0D),
. . :

then NT(a) # ¢.
A .

4,2.6  THEOREM: Evéry type O social system has an equilibrium.

Proof: By 3.2.2, the graph T'(a) of each behavor a :in
‘the personnel A satisfies all but the requirement that
a(xa) c:XOt is convex for each.39 € X0, This requirement

~

is satisfied, however, since w, is guasi-concave. Thus,
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MNr(a) # ¢ and, evidently any point x in this intersection is
A : .
a fixed point of the evolution, ie., an €quilibrium.

s

4.2.7 COROLLARY: A static socialréystem with a collective behavior

| space %hich is compact and convex in é locally convex real
linear topological space is of type 0, hence has an equilibrium,
if the follbwing conditions are satisfied fSr'each behavor

o in the personnel:

(D u, is quasi-concave on X, X {ya}fér each y% ¢ ha(Xa),

‘and u, is continuous;

(2) 'hais continuous};
(3) g, is concave on X, x {y%}for each v* e h, (X*) and
éa is continuous.

Proof: From the quasi-concavity and concavity of u,, respec-

"a,
tively,on X, x {y®}, it follows by 3.2.4 that Ga is quasi-
‘concave on the same " e ha(Xaﬁ; o € A). Henceva(xa)

is convex for ééch x* € X% and o € A. From thé-continuity of

u, 5 h and'éu , it follows that w, is continuous, 'so that the

o o

social system is of type 0. Now 4.2.6 applies.

4,2.8 THEOREM: The contractual set C of a type O social system is.

“compact.
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BN

Proof: Clearly, C is'precise1y the intersection of the graphs r(a)

- of all the behavors, which is compact since each TI'(a) is compact

by 3.2.2. SR

#
4.2.9 THEOREM: The contractual set of a type O social system S is
convex if the effective utility function ﬁa of'eabh behavor o in

the personnel of S is linear (both concave and.éonvexl

 Proof: It suffices to show that the graph T (o) of an arbitrary
~ behavor o in the personnel is convex. Let o be such a behavor,

and let x, y, € I'(a), where x = (x%, Xa) and

v (y*, yd). Define z = (2%, z, ) = Ax +1' y for any

=1 -A' €[0,1]. Then %a (z) = Aﬁa(x) + A7 ﬁ&(y),‘by
.lingarity of &a . Since %, ¥y sP(a),‘ﬁa (x) = ﬁa(xd) and

ﬁa(y) = 5a(ya}. But, by 3.1.4.6.1.c and the

linearity of %, , %ais linear also. Hence, ga(za) =
Aga(xa) + A ga(ya), so that ga (z0) = ﬁaﬂz),-implviﬁg that

'z, € a(z?), i.e.,that z el'(a). Thus, I'(a) is convex, completing

- the proof.

4,2,10 COROLLARY: 1Let S be as in 4.2.9, and let A be the personnel
of S. Denote Y* = ha(Xa) for each o £ A. Assume that, for
each o € A, ha(k <+ 'Af%a) = Aha(ka)-+ 'Ah&(' x®) if x©

and 'x®belong to X%. Assume that éa is linear (concave and
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convei'qn Xu x Y, for each a e€A. If ua is linear on
X x ¥ x éa(xa x Y*) for each o ‘eA, then the contractual

set of S B convex.

Proof: it foiiows from the ﬂypothesis concérﬁiﬁé ha’and éa
éhat_éa =%, ha(xu)) is lineaf on X. It is ¢asy to see

(though tedious to show) that the hypothesig cbncerning u, then
'ensures the linearity of ;a . Since &a is thus iinear from

each o€ A, the desired result follows by 4.2.9.

_—
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Evolution and Equilibrium in Dynamic Social Systems

AN

The primary aim of this section is to demonstrate reasonably

‘unrestrictive sufficient conditions for the existence of what will

be defined to'Be a dynamic social equilibrium. Although only

one type'oé evolution and social equilibrium needed consideration
in the case of static social systems, in the case of dynamic

social systems several types of evolution and several corresponding
types of equilibrium deserve attention. ¥or, in the dynamic case,
the feasibility transformations are nc longer restriéted‘tb be
constant maps, so that various forms oﬁ reiéxation of the cons;ant—
ness of these maps can be cégsidered in conjunction with various
assumptions governing the behavors, yiéiding a variéty of

conditions each of which affords an existence theorem for an

.associated type of social equilibrium. Furthermore, none of these

sufficient conditions implies the other, so the existence

‘theory for social equilibrium in dynamic social systems does not

reduce to a single theorem as it dia in the'stétic case - at least,
this author is not able to assert such a'reducfionbat this fime.

To compactify the striement of the eXisten;é theorems for
dynamic>socia1 equilibri -, it is convenient eafiigr to.have defined
types of social systems accordingly as tﬁey satiéfy certain
conditions..In this way the sufficient conditions for existence of
an eéuilibrium are collected under each "type", and the hvpotheses

of the existence theorems dre shortened to become assumptions

that the social svstem is of one type or another. Also, collecting
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all of these types in one subsection is intended to facilitate
their comparison with each other. The following'section is

thusly motivated.

4.3.1 Types of Dynamic Social Sysiem

It helps the'expositiop to collect at the outset all
the common features of the dynamic social systems to be
considered here. The first common feature of these is that the
behavior space Xa of each behavor o is assumed to be non-empty

compact and convex in some normed real linear topological space

La:-

(4.3.1.1) X e kQ(L) (o € A)..
) o )

Secondly, the effective utility function, ﬁasof each
behav ot o ¢ A is assumed to be continuous (on X) and (its

restriction) quasi-concave on Xa x {x%} for each x% ¢ x*
(i) Wy:X > R is continuous,

(4.3.1.2) © (e e A).
(ii) ﬁaixa'x {x*} =+ R is quasi—concave

% € XM

Finally, the féasibilify-?pace D, of each behavor o ¢ A is

assumed to be the Hausdorff metric space (see 4.3.1.5) of all



non-enpty closed (hence compact) and convex subsets of Xu:

-

(46.3.1.3) Dy = CQX ) (o ¢ A}.

This gives siﬁplicity'to the following definftfion.

4.3.1.4 Definition: A social system satisfying 4.3.0..1-3 is classified

as type I iff the feasibility transformatiom

t CQ(x,

o ) X X~ CQ(X,)

s 1T
‘A

is continuous for each behavor o € A

4.3.1.5 LEMMA: If X is compact and convex in a metwufic linear space

and'C(X) has the Hausdorff metric [or,equivwﬂenfly (see 3.1.2.13),
the finite] topology, then C(X) and its subsmace CO(X) are both

compact and convex.

Proof: ‘The compactnes;‘of C(X) follows by 351.2.12. The
convexity of C(X) follows by fhe-continuity @f scalar multi-
piication.énd vector'addition,in the linear ttopological space
where X li¢§. Since convex combiﬁations of wonvex sets are
convex, it follows also.that CcQ(xX) C:C(X) ﬁ&_convex, and the
foliowing simple convergence argument estaﬁﬂﬁ;hes what is
needed. Let {4} ;=1 *;fk be a converging saqﬁence of points
I € CQ(X). Then *k e C(X), since CCO is.mﬂbééd. Let *x,

*x' € *k, and denote an arbitraryv convex ecmibination
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A*x + X'*x" by *x (A = 1 - A" € [0,1]). Then there exist

» 0 . EIE S R
sequences {1x} i=1" %%, {(*x'} f=1 > *x' with 1x, x' e Xk

(i=1,2, ...). Since ik is convex, ax +atixt = Iz lk

i

]

1, 2,...), so that {i?} i=1" *%. Hence,*X% e *k, proving

that *k is convex and, thus, that CO(X) is closed.

#

In the next two definitions one is able to relax the

condition on the feasibility transformations by restricting the

effective utility functions in alternate ways.

4.3.1.6

4.3.1.7

4.3.1.8

Definition: A social system satisfying 4.3.1.1-3 is classified

‘as type IT iff, for. each behavor & £ A, the efféctive utility

function ﬁa is "linear" (both concave and convex) and the

’feasibility-transformation ty is usc as a point-to-set mapping

with t, (k, x)c:CQ(Xu) being closed and convex,

(k €1 CQX,), xc¢X.
N :

~

Remark: In this case, it is possible to view t, as a

point-to-point mapping into CQ(CO[X 1), (o emA);
o A

Definition: A social system satisfying 4.3.1.1-3 is classified
as tzpe-III iff,for each behavor a € A, the effective
utility function %a is strictly quasi-concave on each Xy x {x*}

(x* £ x*) and the feasibility transformation ta is as in tvpe 1II.
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4,3.1.10

4.3.1.11
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Finally; these last two restrictions on the effective

"

utility functions can be eliminated with appeal to an interesting

restriction on the feasibility transformations.

—

Definition: A mépping £: X > Y of a convex set X into.a

‘convex set Y is called a convex process iff its graph

I‘(g_)‘ C X xY is convex.

Definition: A social svstem satisfying 4.3.1.1-3 is classified
as type IV iff fhe collective feasibility tfansformétion is an

usc convex process.

Remark: Of course, a collective feasibiiity transformation
t isia convex process iff each coordinate feasibility
transférmat&on is a convex prbcess.

'This completes the present classification of social
systeﬁs into ;ypes. It is clear that, if the feasibility
transférmations are ail~constant maps, a social system
of type I - IV is slightly more resfricted-tgan that
dealt with in'section 4.2. The‘restfiétidg comes from the
fact that each X&lis now assumed to.iie in a normed (real

linear topological) space, while before it was only

assumed to lie -in a locally convex (real linear topological)
space. Thus, bv taking on this restriction, the constancy

assumption for the feasibility transformations has been
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eliminated.

~ Before turning in section 4.3.3 to prove the existence
of equilibrium for all four types of social system defined,
the next brief section will identify types of evolutions and

equilibria corresponding to these types of social system.

4.3.2 Types of Evolution and Equilibtium for Dynamic Scocial Systems

Corresponding to the types of social system defined
in 4.3.1, a set of mappings will now be defined. Corresponding

to each such mapping, called an "evolution', a type of social
PP 24!

equilibrium will be identified as a fixed poiht of that mapping.

It is such types of fixed point which will be shown in the next

section to exist.

4.3.2.1 Notation: Let k, % denote generic elements of ‘HCO(XQ) and let
A
'S denote generic elements of X. Denote 7 k) = k
9y:, g n CO(XQ)() o ?

() = %, 5 1@ = x5 =y,

™ @) =2,

CQ(Xa) oF XKy o

Also denote Z = CO(X ) x X mz., A (kx)= To(k , x*).
o - a A a2 — A o

Finally, denote generic elements of Z also by z.

> 2=

4.3.2.2 Definition: The evolution of a type I social systemis
a transformation E: Z'» Z defined for z € Z by
EI(Z) = {t(z)} x A (¢t (2), %)

P

it is classified as tfie I. The evolution of a type IT

social system is a transformation EII:Z + Z defined, for
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z € -Z, by

EH(z) = t(»z)‘x A(t(z),2z);

it is classified as type II. The evolutions of a type

111 social system are transformationsEII 2> Z and
: I

EIV: Z > Z defined, for z = (k,x) € 2 Ey

BrppGem) = (£, ( alln®,a™) x AlLD),

_ EIV(k,x) = t({k} ><_A~(ktx)) x Alk,x),

. respectively; E is classified as type III' and E__ as
I1T - ; v

type IV . The evolution of a type IV social svstem is a

transformation EIV:Z > 7 defined and classified as above.

Definition: A fixed point of an evolution is called a social

equilibrium (or social contract) and classified according to the

type of evolution of which it is a fixed point.-

So much preparation finally allows turning to the existence

of social equilibrium in the dynamic case.
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Existence of Dynamic¢ Social Equilibrium

.

In this section it is shown that socialisystems of types

I ~ IV have equilibria. In particular, it is shown that the

" (type i), evolution of a type i social system has a (type 1)

4.3.3.1

social contract for i e {I, II, III, IV }, and that a type III

social system has, in additlon, a type IV social contract.

In each of the existence results, the following fixed

point theorem is used:

THEQREM [Prakash and Se;tel]: Let {Za‘a £ A} be a family
of 2° convex, compact and convex spaces, and let .{Ea: |
Z > Zav[ o & Albe a family of usc point-to-set mappings on
Z = ﬁZa such that Ea(z) € CQ(Za) (z €2, o e A). Define

A

E: Z + Z by E(z) = Tig (2) (z £ Z). Then there exists a
A
(fixed)point z ¢ Z such that z ¢ E{z). [1970, 3.16 Theorem VI].

In each application of this theorem, Za will be taken

to be CQ(XQ) x X,, as indicated in 4.3.2.1. In this case, both

CQ(Xa) and Xd are easily seen to be 3° convex, so that

their product Z, 'is 3° convex, hence 2° convex.

It is worth noting that the fixed point theorem of Fan, used

in 4.2, cannot be applied in this case, as Z2 = CQ(XG) x X lies in
a o :

a semi-linear topological space while it must be assumed to lie

in a linear topological-space for Fan's mentioned theorem to apply.



Thus, an extension of Fan's theorem is needed, and'4,3.3.1
provides just the desired sort of extension:. . Actually, other

fixed point theoreﬁs of Prakash and Sertel [1970] can safely

be conje;tured torsuffice for'ébﬁe of the above types of

social system;,bﬁt 4.3.3.1 works for all of these, as will be

seen, IF is because 4.3.3.1 works for all of these cases that it is
possible to economize én the number of fixed pqipt theorems té be_

used (known).

4.3.3.2 THEOREM: -Every type I social system has a type I social contract.

" Proof: By 3.3.2, each behavor o ¢ A ié usc in (ta(k,x),ia),
withr.a(ta(k,xj, x*) e KQ(XQ) = CQ(X,) for eagh (k,x) e Z.
Since each t, and wxu(k,$) = x% is éqntinuous
on Z, a(ta(k,x),ka)‘is’usc on Z. Hence, {ta(k,x)} Xa(ta(k,x),xa)

is usc on Z, whilé {ta(k,x)} X.a(ta(k,x),,xa)-s CQ(ZG)

fl

{(k,x) € Z, o e A]. Also, A HZa is the pioduct of 2° convex
- A N

compact and convex spaces Za , and

EI(k’,x) =T ({t (k,x)} x alt (k,x),x™))
B e o O

A
Thus, by 4.3.3.1, there exists a type I social contract

PR EI(Z) C Z.
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- 4.3.3.3 THEQREM: Fvery type 11 social system has a type II soqial.
contract. |

EEEEEF Since each Ei is usc, eachtx{gx(k,k), ﬁxx as a
compoSitiqn of ﬁsg mappings;viS“usclon Z. Thus, t (k,x) x a(td--
(k,x),‘x“); for each ae A, i8 usc on Z. Sincé'EII(k,x) =

NnE , where
1T
A

EII& ,X) ta(k,x)vx a(ta(k{x),x )s

to apply 4.3.3.1 it remains onl§ to show that‘EII(k,x) g‘CQ(Z.)
for éach o ¢ A. Since ta(k,x) e CQ(CO(X')) by.hypofhesis,

. v : —_ _ Sal .

it suffices to show that a(ta(k,x), x*) ¢ QX . 1In fact,

as the graph I'(o) ¢ CO(X ) x X@ x Xa is coﬁpact by 3.3.1,
S - o .
and td(k,x) is closed in the compact CQ(Xa), it follows that
ta(k,x) x {xabc:CQ(Xa) x X% is compact, implying that
a(té(k,x), ¥x*) is éompact, hence closed. This leaves only
the convexity of a(ta(k,x), x*) to prove. Let X, ,'x& £
q(ta(k,X), x*). Thgn %a(xa,xa) = ﬁa(za, x*) and ﬁa(x'a, x®¥) =
w (', x*), for some g , 2' e t (k,x). By 3.1.4.6, linearity
L) o o o . :
of w implies that of i , so that W (z , X0) = 1%(2 yX0) +
o] o o ot T o’
AW ,x*) for all A = 1 - ae [0,1], where Ly = Aza+i'g& . But,
a ~ :
by linearity of W, s Wd(ia, x%) = Aﬁa(xa, ) + ' ﬁa(x& ,x%) =
v (L4, x%), for Ea =A%+ x'x'a . Hence, X, € a(ta(k,x), x*),

showing all that was required.

F

#
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4.3.3.4 THEOREM: Every type III social system has (1) a tvpe III

and\(Z) a type IV social contract.

Proof;'

— -

ad(l): Since the effective utility function w_ is strictly

a
concave on Xa x {xa} er each x@ ¢ X%, a(ku’ xQ) is singleton
for each k¢ CQ(Xa), x* € X%, a e A. Then-ta(k, a(ka, x*), x*)
is the image under t of a point (k,a(k,, x%), x%) e Z, hence it
is non-empty, compact and convex in CQ(Xa){ by hypothesis, for
each such point z € Z(a ¢ A), Thus, for each z = (k,x) elZ,
or caCeaEry)) * Tix Jlx, e X, € cateatty) ¥ {ix} |x e

X,}), which is homeomorphic to CQ(ZG), where, for each o ¢ A,
EIIIa<Z) = ta(k,a(ka, x%), x“) X a(ka, x*).

But the map E :Z7 > CO(Z is usc, as t_is so and o and
PEL (z,) , a0ty s s

all projections are continuous (o € A), and E (z) = IE_. (2)

II1 A III
for any z ¢ Z. Hence, 4.3.3.1 applies, yielding that there

exists a type III social contract z ¢ Z such that z ¢ EIII(Z).

ad(2): Defining

- % ' . o
By, (630 = £, (09 x & (k,30) x al,a)

A v,

each o is usc, so is the map A. As each a(k , x*) is
- . o

for each a € A and z = (k,x) € Z, EIV(Z) = 1E (z). Since

singleton, so is A (z) (z ¢ Z).’Hence,{ k} x A(k,x)e Z

for each (k,x) € Z. Thus, E

Ery :Z.fuCQ(CQ(Xa)) x Xa has been
o : Co
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Proof: For each o € A define the map E

75.

¥

defined for each o €A, and the range is a sﬁbspaée of

cQ(z™ h .J i ' :Z > Z).
Q( a)’ so that FIV is the product of usc maps EIV Z -+ CQ( a)
By 4.3.3.1, there exists a type IV social contract z e Z such
that z ¢ E_ (z).
IV( ).

/

#

THEOREM: Evefy.type IV social system has a type IV social

contract.

v (gs in the last
o

proof) by

. EIIVa(k,x) = t_({k} x Alk,x)) x alk,,x%).

By the upper semi-continuity of each o, A is usc, so that each

EIV is usc,as each t, is so by hypothesis. As alk , x*) is
: a
a

non—empty, compact and convex for each k e CQ(Xa), x* ¢ X® |
: ‘ : . a. -

a € A, it follows tﬁat‘éﬁk,x);-hence, {k} x A(k,x), has the
same properties for each (k,x) ¢ Z. Since t is a convex

and usc process, it follows that each td. has a convex and
compact gr?ph F(ta)c:z x CQ(Xa),vas both Z and CQ(Xa) are
compéct(and“convex). Thus, tu({ki x .é_(k,x})'is'non~empty,

compact and convex, for each (k,x) € Z, as it is. the set

"eqoxay T ) 1 (UK x Ak, %) x CQX ).

Hence, E {(z) is non-empty, compact and convex in Z, for

v
a
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each z ¢ Z and o eA. As E  is nothing but the map defined
by EIV(Z) = ..JIE

A
exists a type IV social contract z € Z such that z ¢ EIV(Z).

v (z), 4.3.3.1 yields the result that there
o ‘

- 4.3.4 Compactness and Convexity Results for Dynamic Contractual Sets

In this section it is shown.that the contractual sets,
i.e., sets of social contracts, shown to be noh—empty in
the last section are all compact, and that the contracutal set
consisting of type IV social contracts is aléovéénvex for a social
.sységm which is both type III and type IV.
4.3.4.1_ THEOREM: Let C stand for the contractual sét’shown‘to be
non-vacuous in any one of the theorems 4.3.3.2-3, 4.3.3.4.1-2

and 4.3.3.5 above. Then C is compact.

Proof: Let E by any one of the evolutions E (i.e.{ 1, IT1, III,
—_— 5 .
IV }), Then E is usc, as each E, was shown to be so (o € A).

Then the gfaph -
I'(E) ‘=‘{(z, z‘){z €Z, z' € E(z)}

is compact as a closed subset of the compact Z x Z. Denoting
the diagonal {(z,z')lz=%‘ e Z} bv A, A is compact and C

is nothing but
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C = nZ(F(E)r\A),
hence compact.

THEOREM: Let S be a social éystem which is both
type III and type IV, and let C be the set of type IV

social contracts of §. Then C is convex.

Proof: As Z is convex, so is the diagonal A of Z x Z. Hence
it suffices to show that the_graphi‘(EIV) is convex, as C =
.nz(f(EIV)(\A). "It is obvious that P(EIV) ;é convex if the
’gréﬁh r(a) is convex, for the graph TI'(t) is'ébnvex by
’hyﬁothesis. Furthermore, T (A) is cénvex if the graph T(a) of
each behavor o € A is convex. It is tedioué but

straightforward to show that I'(a) is convex, using the

hypothesis that Ga is linear ( o € A).

f
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EXTENSIONS AND APPLICATIONS

This chapter will identify a selected nﬁﬁﬁe; of directions
invwhich tﬁe framework and theory of £he prefioué'cﬁapters can .
fruitf#lly Qe extended, also ipdibéting éppliéétipn areas.

One large extension is into-pfbbabilistic sd;iél systems,
occupying the first section. In that section a pé:iicular notion
of behavior‘as a probability measufé on a‘sigma;fiéié bf actionsig

developed, the numerical répresentébility of preferences on sets

"of such behaviors is discussed, and the notion of probabilistic

social system constructed.
The next section proposes a couple of axioms 2as necesaarily
satisfied by a causal relation, and applies the'reéulting notion,

of an event 'inducing' an event, by building on it a notion of .

.power in probabilistic social systems. The result is compared

with Dahl's I1957] concept of power and theAimportancé of
équilibriﬁﬁ:metho{isforPOWer anaIYSis is pointed out.’

The attracﬁion»and stgbility'prépertiés of é@uilibriﬁm sets
and cores is the topicvof the next section. The réqﬁired concepts
are presented, as bogrowéd and modified, ffom thé'theory of
dynamical systems.

Finally,’tﬁé study is closed by a discﬁssiaﬁ’cf a number of
extensions and applications particularly relevent for the managemgnt
Qf'orgaﬁiiations. OrganiZat%gns are defined, optimal incentive

problems posed, the choosing of incentive schemes related to the
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'

- act of legislation, and the relevance'of‘equilibrium methods . for

.

all ofAfheée clarified. Three main types of control, remunerational,
socializational and‘informatipnaL afe illustrat;d. Extendiné the
de;ail in defining'impressién functions, it is shown how
information;systemic elements can be incorporated into the model.

Finally, the difegtion of multi-level social systems is pointed

to as an.area into which the model can be extended.

N
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Towards the Analysis of Probabilistic Social Systems

"Along lines earlier suggested in [Sertel, 1969 a, bl,

pfobabiligfic social systems will now be developed as an important
extension of the social systems so far séudiedQ The next section,
5.2., illustrates one of the motivating reasqns for studying
probabilistic social systems. |

In 5.1.1 the notion of a behavior is particularized to that
of a probability measure on a sigma-field of actions. 5.1.2
settles matters pertaining to the measurable nume?ical representa-
bility of preferences on behavior spaces when'thémpreferences are
originally specified on‘a sure action ( a set df "sure prospects").
Then 5.1.3 finally assembles probaEiliétic social systems on the

basis of this groundwdrk.
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5.1.1 Action and Behavior

-

The notion of rbéhavior' introduced in'2.i énd‘uséd up to
here is extfemély general and abstract. In this”section a more
partic&lar and concrete versioﬁ of that ndﬁiop will be constructed,
fbundedlon'a certain notion of ‘action'. Tﬁis-construction will,
in turn, serve as a foundation for the tfeatment of "probabilistic
social systems", after certain questions relating to the rep-
resentation of preferences are dealt with'in'the next section.

This and the next two sections will thus give  an extension
of part of the framework offered in‘(Sertel,i969'a)‘

The term 'individualjxand phrases such as "things which
an iﬁdiVidual can do" will be formally undefined»here; they
are to be understood in the natural language sense. This
prepares .the ground for what followé.

:5.1.1;1 Definition: The sure action dqj.of an individual j is
the set of all mutually exclusive thingé which i can do.
A sigﬁa*field 53 of subsét of oej will be éalléd é sigma-field

of actions (or, for short, an action field) of j iff it

contains the finest partition of 0 :
: J

0, = ) e,.
{ i {mj} le €, j} 5

There will always be assumed to be a unique non-trivial

action field Oj Wwth which an individual is associated. A
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subset eij:oej will be called an action of j iff 9j € @j;

Definitien: A probability measure py Cgl+i[0,l] defined

on the action field @j of’an;fﬁaividugl j will be called

a behavior of j. The set Pj of all behaviors of j will be

called the behavior space of j;

Definition: A collectivity is an ordered pair»QW,J>,where

W= {Pj|j e J}is the family of behavior spaces.Pi of the
individuals j € J, and where J is a non-empty collection

of individuals.

Remark: Since each action field is'non—triviai, each behavior

space is non-empty. Compare 5.1.1.3 and 5.1.1.5 with 2.1.2-3.

Definition: The sure joint action of a collectivity

<W, J> is the product 9

g = oej of the sure actions

I
O9j(j € J). The sigma-field of joint actions (or, for

short, joint action field) of <W, J> is the product

QJ = HQj of the action fields ea(j e J). A subset
J .. ' Co
9 6 . . . . 2
'y CIO g is called a joint action of <W, J> iff GJ £ OJ.

; Definition: A (joint) probability measure p_: 0_ > [0,1]

J J

of a collectivity

defined on the joint agtion field OJ

<W, J >will be called a joint behavior or state of %W, J> .
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The set PJ of all such measures will be called the 101nt

behav1or space of state space of <W,J>.

‘Definition: The collective behavior space of a collectivity

<W, J> is the product P = NIP_ of the behavior spaces

. J 3

P.(j € J). A function p: J > UP. in P is called a collective
J

behavior of <W,J> iffp(j) ¢ P (G eI, i e.; iff pe P. In

this case, p(j) is also denoted by pj = p(j);s Pj. (cf.2.1.2-3).

Remark: The distinction between joint behaviofs (or states)

and collective behaviors of a collectivity is crucial. To

_the probabilist it will already have been clear that a behavior

is simply a certain marginal of a joint behavior and a collective

behavior is simply a specification of all such marginals for

a joint behavior. Thus, there is a unique collective behavior

specifying these marginals of a joint behavior, whatever
joint behavior is given. Specifying a collective behavior,

however, determines either not more than one joint behavior

~or npot less than the cardinality of-the~continuum joint

behaviors..(This is so, for, if two joiné héhaviors have the
saﬁe épecifiéd marginals, then a céntiﬁuum‘of convex
combinations also satisfy this condition, i.e., the set

of jpint behaviors consistent with a collective behavior

is convex). That there exist a joint behaviér'given a



.

collective behavior is governed, of course, by the
satisfaction of the Kolmogoroff consistency conditions.
(Kolmogorof f, 1933). (Seé"algb’(Kingman énd Téylor, 1966)

and (farthasarathy, 1967).)

84
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5.1.2 'The Representation of Preference

In the social systéms dealt with up to the present chapter,

no mention was mde of how it was that the utility Ffunctions

e~ -

used were,guaranteéd to exist as numerical fépreéentatioﬁs of
(complete) preferenge ofderings 6ﬁ the sets in quéstion. This

is becausg all of the properties which were_assumed, at one stage
or another, to hold for these functions were properties which
have béen proved in the literature to be assumébie without any
loss of generality when certain conditions'a£e ﬁet, and these

sufficient conditions happened always to be satisfied whenever

needed.

" Main reference in the literature is to the representation
theory of Debreu (1954) and of Hefétein and Milnoxr (1953). For
all of the regults developed so far, the utility’functions were
assuﬁed‘to have certain.continuify and.convexity%broperties. The
domains éf‘definitions for these functions were élways compact
and convex. Assuming the necessary and sufficieﬁt‘conditions
demonstrated by Herstein and Milnor and presenfed below,
cbnvexity'of‘the domain guarantees the existenté df.a real-valued
1inéar function pfeserving the order of the given preferences.

If the domain is topologized by the ofder of the ﬁreference
relation, this funétion is easily seen also to be continuous.
Thus, all that was eéér assumed so far can be seen to be

assumable, using the convexity of the set ordered by preference



aﬁd the~yesults 6f Herstein and Milnor; In certain cases,
Debred's theory could have been usgd as an alteinative,
e.g., wﬁen the domain was coﬁpact in a metric spate; hence
satisfying'the seébnd axiom of ecountability (see Debreu's
‘Theorem 2). |

In buildiﬁg toward probabilistic social s?stems, studied
in the hext sectidn, Wheré the behavior spaces &I@ of the special
kind introduced in the last section, matters of representation
of»preﬁerences are less straightforward; hencegiﬁhe present
.segtion, The exact questions which are addressed here will be
sﬁafed shortly, after some minimal prenaratidﬁu

Let a collectivity <W, J> be given; Fix‘amtention to a
specific individual j e J; and iet oeJ X.R be emm@letely
‘ordered by a preference relation <3 summariziug j's preferences
between eiéments of this set.

‘The‘first queséion addressed now is the fo&ﬁowing;.

Under what conditions does there exist a functiomn.

vj: oeJ xR =+ R

such that

. , T) = v ( ,f dp,(
UJ(PJ ) £ 5 w, ¥)dp; (w)
oJ

P
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exists for all (pJ,r)ue PJ-x R; and, such that, identifying each
J

‘z € OGJNWith the degenerate pi e P aséigniﬁg ] to the set

{z} € 0, and O to the rest of 0ys the eauivalence

J
z .oz N e 7
uj(gJ’-r),i.uj(PJ , ¥ ) iff (z,r) Z_j(z',r')

holds for all (z,r);(z',r”) € 503 x R?

_Ihis'duestion will be answered by use of a:rgsult due to
HersteinAaﬁd Milnor. ”

ﬁerstéin and Milnor [1953] have demonstrated a necessary
and sufficient triplet of conditions for the e%iétence of a
real-valued, linear fudction on a set’M ordered compietely
by a félation :j , such that the function preserves this ordér.

These conditions are:
(1) M is a "mixture set":
(2) for all a, b, c, € M, the following sets are closed:

{x e [0,1]7[xd + (1~ M)b 2iehs

{} ¢ [O,i]lc > da + (1 —A)b} : LT
. Yt . ’

(3) if a, b;'é € Mwith a =, b (where; for all d, e e M,

.

'qd = e' denotes 'd <, e and e <, d'), then
j = i

i

1
—~—a + ¢ . + =
2 . 2
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A'"mixture set'" here is a geperalization of‘é qéﬁvex set in a real
“vector space. |
,NPW'FhiS result will be used to obtain soméAreasonabie con-
ditioﬁs under which the desired sort of fungtién v5 will
exis#. Eiyst, it is assumed that the set '69J3is conveﬁ in_a
'real vector space;-It follows that Sy X R is}éaﬁvex, hence a
"mixture set''. Next, assume that the condiﬁishs'(éj and 3)
are métrby M= oeJ XVR; Then there exists aviiﬁeér real-valued
function vj: 093 x R+ R ﬁreserving f_i.‘It yiiivnow bé seen
that this_function Vj has all the desired pbeertiés, éftet a
'few more gssumptions are made. |
Tofolbgize oeJ x R with the order topolqu‘fi{. That is,
topplogiée oeJ x R with the coarsest topology féf'whiéh,
(e 0 xRlb>,a), (be b «Ha _<_ﬁ'b}'l‘a e 0y x
is a familylof cloééd ééts. (Note: ~This is gég:the order
topology defined by Eilenmberg (1941). The definition of Eilenberg
would correspond to’tﬁe quotient space where:éiements of an
equivaleﬁce class according to the order are nof distinguished,
even though tﬁey'may be distinct in oeJ x R. Althéugh the quotient
Spac; of the sﬁace defined here is always T1 (in fact, Tz, i.e.,
Haqsdorff), this is not true of the space itself, as can be seen

_ from the fact that if b # a but'b ij a and a >3

b, then there
is no neighbofhood of b(a)'of which a (b) is not an element.

The course of definition chosen here is motivated By the need,
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in the present context, to keep distinctness of points distinct

s

from non—equivalence of points).It is obvious that v; is

3

is continuous whenever 6. x R has

then continuous. Hence, wv. 021

J
a topology finer than the order topblogy of ﬁﬁ .
| The ﬁingl éésumption to be ﬁade cbnce%ning O?J'x R is that
o éj is a quasi-coﬁpact Tl(topological) subspace of a linear
topological space;' The first consequence of this comes from
the fact that éﬁJ x R ié T t.e., that the'singleton subsets
{a} 9 x R are closed.” The mentioned éonseqﬁence of this is
that V3 is continuous. This is so, for a T; topology on JBJ x R
=M isAfiner than the orderﬂﬁopolbgy. To see that»a T1 topology
is finer than the order topology, take a, ¢ e M éuch that c ¢
{bfe M[E igja} and note that the complement of {b eleb i'ia}
is open in the Ty topology by the fact that c zj a implies ¢
toAbe distinct from a, whereby there ig a nbd of ¢ (in the Tl;
topology):which does not meet {b ¢ Mb ai'a} .

Since oeJ x R fails to be quagi—compact,'howevér,Ait éoes
not-follow from the continui?y of vj that vj is bounded. This
is a serious deficiency, as boundedness coupled with continuity
of Vj wouid’guaran?ee its iptegrability with respect to each
P; e'Pl, as desired. It is this_deficieﬁgyato ;hiéh a remedy will
now be sought;i

Let ;j: 0(% -+ R represent a typical elemept of the set of
linear real-valued funétigys on 8, for:which ;j(ogJ) C:E,

where B is a fixed (bounded) cldsed &nter&a] [rl, r2].
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kThe functions ;% are analogous to the (interpré#ed) incentive
functions g, :.X.» R of thg previous'chapters;Athe symbol
éj’ however, is reserved here for a different but.?losely related
function.) By thg‘ fact that :75'5 are restricted to have their
ranges cogtained in the bounded set B, it is being assumed that
no infinitely‘lérge rewards or ﬁﬁnishments are distributed in
the soqial systems about to be considered.

F?om this assumption an impo;tant consequence will now.be
obtained. First to be noted is that each Yj is obviously bounded.

Actually, this follows from the fact thaf oGJ'Zis quasi~compact

and that, §y its 1inearity,wyj is continﬁbus,_as Vj(éOJ) is
therefore quasi-compact, hence bounded as a subset of R. But,

also, Vj may now be taken to be a funétion vj:oei X B » R, since
;ts restriction to oeJ x B is all that matters in the social system
which the present development is obviocusly heading toward.

vThé result of this is that the function

.uj(pJ,r) = f vj(w,r} dpJ(w)

. oeJ i
" is now well-defined, having imposed the constraint r € B, as
vj,is continuous and bounded on oeJ x B, hence integrable with
respect to each pJ € ?Jh The property desired for v, with
respect to degenerate eleménts of PJ is satisfied by its linearity.
Thus, uj now serves as a "utility function" for the individual j,

the domain of definition being P; x B, where ?J is the joint

behavior space of the collectivity <W, J>
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Before turning to the next section, a natural continuation
of the above development to be settled here is deriving incgntive
functions for the individuals in J. Again, atiention will be
fixed to the individual j e J.
.Defiqe the function éj:f P, > R by

J

(P) = v.(w) dp (w).
EJ 7 /;‘ YJ() pJ()
o8

J
Since ?j is continuous and bounded, éi is well defined. Now it

is clear that this function, Ei, will play the wole of §a (in

the previous chapters ) for the behavor j of the coming section.
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5.1.3 Probabilistic Social Systems

Building on the’grodndwork provided iﬁ thevlast two
seétions; it is now possiblg(to;ﬁgfing probabilistic social
systems a§ a variety of the generél social syStem'intfoducedtatv
lthe outset of the study. Ihis'will provide an extension of a formal
entity earlier introduced in (Serfel, 1969 a). The mentioned
formal entity‘(although ca11ed a "collectivitf“ therein) was
a fipité—personﬁei.versioncf what is about'to_be;defined here
as a probabilistic social system,-the behavior‘sﬁaces being
closgd gaometric simplexes’in Euclidean space; with incentive
and interpre;ation' schemes missing from the Spécification while
an impression scheme was present. The socialrsﬁstem speciﬁied
was shown in that and an accompan&ing study (Sgrtel, 1969 b)i'
to have a non-empty compact and convex set of équilibria.

The distinguiShing‘characteristics of sugh equiiiﬁria in
compafison to the equilibrium shown by”Nash'€1950, 1951) to

exist for games of a similar'specificatién consisted of two
components.  Firstly, impression'functions %ere not explici;

- or ghey wefe implicitly assumed to be identi%ynﬁaps-Q

in Néshfs specification. Secondly, the'equilibria éf Nash were
collective behaviors, while those of Sertel were jointybehaviors,
referring to the términblogy and‘very importamt‘distinction

(see 5.1.1.8) introduced'i% 5.1.1.
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The importance of'bging‘aﬁle to deal wiéﬂ;joint behaviors
is.ﬁogt clear whenran extéﬂsion of the pre;éﬁt}study to an
invéstigation, e.g.,-of the core is con;idéféd; For
the.joint randomization of the‘adtionsi§f ﬁemﬁérs* has td
be cdnside?ed as in ﬁhe very nature of a céélifion when the
ﬁotioﬁ‘of behavior is probébiliétié. -This.ﬁoin# must"therefore
be emphésized as crucial also to any ﬁolitiéai énalySis, if
any, Whiéh‘is to benefit from the methods gqggeétéd by the
preseht study, since it may be éxpected to,ﬁé;éésential especially
in politigal analysis tokbe realistic about;th%iworkiﬁgs of
éoali;ions. The theory of péwef suggestéd ié&éf:in tbis
sthdylis.énticipated in the last remark. .

A motivation for defining and studying probabilistic

“

socigl syétems should be easily extractible ffdﬁ the~components 
aboﬁe. W;th minbr effort, relying on';he preQioﬁs sections,

a defini#ion wil} soon be‘formalizeda‘ The mafértﬁoftibn of this
effort has to Ee directea‘toward constrﬁctiﬁg é_humber of

functions. This is now taken up.

5.1.3.1 Definition-Notation: Let PJ‘be the jointvbéhavior space of

a collectivity <W, J> .

Denote - = I 8, , denote the product-sigma—field
n Oi—by @j, and denote the set of probabllity measures
J {3} '

pg: o » [0,1] by P%. ZDefine the function u.}P

> P, as follows:
3 J ]
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P =uj(PJ) has the property that, for any ej e Oi’

J,
J

. - J
ij§ej) = P304 x 873

Uj(pJ) will be called the j-marginal of py. Define the

function 3: Py Pg as follows:

.

j
Py

= uJ(DJ) has the property thaf, for any éJ e'@j,
0~]

133 (6)) = p (05 x 675

UJ(pJ) will be called the j—exciusive marginal of bJ.

Definition: A function uj: PJ x R > R will be called a

utility function of j. A function hj:'PJ +-Pg will be

J

called an impression function of j. A function By PJ > R~

will be called_an incentive function for j. A function ii

assigning to each incentive function gj for j an incentive

_function gj = ij(gj) for j will be called an interpretation

- function for j. A non-empty colléctipn Dj C:[Pi] of non-empty

subsets dj c:Pj will be called a feasibilitv space for j,

and each element d1~g Dj will be called a feasibility for j.

Let {djlj € J} be a family of feasibilities dj’ one for each

j € J. The set d ¢ P, of all joiﬁt behaviors.pj such that,

J
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'

for each j € J, u;(py) € d; will be called a collective

feasibility for J. The set of 'all collective feasibilities

for J will be called the collective feasibility space of J

and denoted by D. A mapping tj: PJ x D> Dj will be called

a feasibiiity transformation of j. The mapping t: PJ xD~>D

dgf;ned by
_t(pJ, d) = {qJ € PJluj(qJ) € tj(pJ, d) for all j ¢ J}

will be called the collective feaéibility transformation

- of J. : -

" Definition: Let <W, A> be a collectivity, let

U= {uala € A} be a family of utility funcfions,
H = {ha]a e A} a family of impression functions,
G = {gala e A} a family of incentive functions,

I= {iala € A} a family of interpretation functionms,

=3
]

{ta!a e A} a family of feasibility ffansformations,

ané‘lef A;be a family of self-indexed mappings

aiP, XﬂDa + [P,] . defined by

af s d) = {p, & d,| v (p, *pf) > sup Wi (a *p )} ,
- d g
* o

(q, € dy) where the operator * and the functiéh w are



5.1.3.4

5.1.3.5

96

.

defined below. Then ‘the ordered seven—tﬁpiét S =

<W,>U, H, G, I, T, &> will be called a probabilistic social

siétem. e -

Definition: Let Pi and Pz be as in 5.1.3.1. ~The binary

operation % is defined by

N j BN s
* B, x 87) = p.(8 6 8.°¢ 0,,0d ¢ 0).
Py %P ®, ) = py 5 pJ(. ), (8, € O, )

Defln}tlon: Denote la(ga) = g, ané'

ua(#a* ha(pz), ia(ga) (pg, f»ha(?z)))

u, (g * b (R, g,(p, * hy(®%))))

i;a (pC‘. * hOt (pz) )

— '* [¢ 3
Wu(pa Py

The derived function w, will be called the effective utility

function of a.
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i

Research Problems: The investigation of the non-emptiness
and other properties of eqﬁilibrium and Pareto sets and the

core of probabilistic social systems in general is a research

problem not undértaken here. A start towgrd this is the
already ménﬁioned study (Sertel, 1969 a, b) of a finite and
static case - not reproduced here - but the results of that
stu&y'can probably be generalized to quite_a degree. The
relation between the equilibrium set, Pareto set and core may

be especially interesting in the case of probabilistic

‘social systems. The reason for making this conjecture is

the point made earlier in this section (preceding 5.1.3.1).

-concerning the coordinated randomization of members' actioms

for coalitions in the case of proBabilistic social systems.



5.2

98

Toward a Framework for the Analysis of Power :

o~

With the probabilistic social systems of the previous section

in mind, the present section now turns to a topic which is central

to political analysis, namely, powef. A notioﬁ:of one event (action)
'inducing"another will be introduced. Being réléted'to the concept
of causality between events, it will be used to examine the formal
constituents of power relations.between.agents; The main data
governing such power relations wiil be derived from the joint
behavibré of the social system éuppoéed. The non-transiency of

these relations will be seen to depend on ﬁhethég*the social system
is at equilibrium.

The present discussion will get further by, rather than starting

~

from scratch, agreeing in principle with the intuitive idea of power
that guided Dahl: "o has power over B to the extent that he can get
g to éoisqmething that B would otherwise not do" [bahl,.1957, PP
202—3] (Dahl's notation is different than the one psea here.)

And, taking this as a point of departure, there is.no visible'route
which both promises to lead téward a fruitful destination and
succeeds in completely by-passing the sgbject ofhcausality. Yor
that reason,it will enhance the exposition fo égfée from thé outset
on a minimal but workable commiétmeﬁt as-to when-a'given event will

be considered to be a cause of another given event. The question of

what are fruitfully to be considered as necessary and sufficient

S

conditions for such a causal relation to be said to exist between
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a given'pair of events is too deep to be addressed here. For

what is "ahead, however, it will be important‘to'agrée on some

 necessary conditions. The choice of such conditions will be guided

5.2.1

5.2.2

by the objective of economizing on commitment subject to the con-

sffaint of;obtaining‘somethiné"tﬂat is teasonably workab1e and non-
vague, Ip doing so, the readeg will be left fiee_to add any
further axioms which apbeaf to be desifable. A,Wﬁole host of
questiqns concérning time-precedence, contiguity;;étc., will thus
be left to'the'readér to éxercise his personal’meiaphysics with
rega;d»to. Differing from Suppes [1967]; theiweékést necesséry

condition is chosen as expressed in the-following>definition.

Definition: Let $ be a sigma-field of events and p: $ -+ [0,1]

a probability measure defined on $, A relation £<:$ x $

will be said to satisfy the first axiom of causality with respect
to p iff the following condition is satisfied: ~

(E,F) € « only if there exists (an evemt) -’
: ]

E' € § such that p[E'] > 0 and
“p[F[E'] < p[F[E] .
Remark: What is required by the above'aXiom is'qﬁite minimal.
If (E,F) £ « is ever to be read as '"the event E is a cause of
event F when the probability judgement p is made," it is

e

being demanded that there be some event E' such that F is less
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likely, according to that judgement, when if is known thét

E' is the case than when E is known to be the case. If this is

not taken as an‘axiom, then it would have to be considered as
reésonabie to say "E causes F although F is at least as likely to
occur under any circumstanées which are at ail likely (judged

to have non-zero probability‘mea3ure) as under thercircumstance of
E".

It is obvious that the event‘%' which is demapded must be
distinct from E, i.e., a different subsef of the sure event on
which $ is a sigma-field. This is so, for otherwise p[F|E'] would
be eqﬁal to p[F]E]. What is very impértant to recoghize, however,
is that E' is Egg_req;ired to be the complement of E® of E. In
fact,‘E' can be an event in $‘which ig a (proper) subset of E and
still satisfy the requirement imposed, whiie neithér Ec‘nor,
indeed, any event in § which is a subset of EC;;heed satisfy the
requirement.

It is precisely this wﬁich constitutes the fundamental
disagreement of the axiom chosen in 5.2;1 with what Suppes
[1967] takes to be minimal as a necessary condiéion. (Reference
'is to his Definitionvl of "prima facie-éausg"; page 11 of
Suppes’' Chapter 5.) By concentrating on the gomplement of E,

Dahl appears in his framework to have anticipated Suppes' point

A

of departure, although this appearanée may be due:to the vagueness

of Dahl's notation in this regard, which in turm may be due to
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the fact that he did not work with the clear-notion'of a sigma-
field of events and may have been unaware of the distinction

between two events being complements and two events being distinct.

— -

Now an additional and final axiom will be introduced to

capture the notion of "directionality" in a "causal relation'.

5.2.3 Definition: Let $ and p be as in 5.2.1. A relation keSS x §

will be said to satisfy the second axiom of causality with respect

to p iff the following condition is satisfied:

(E,F) ¢ x only if p[F|E] > P[E|F].

To summarize 5.2.1 and 5.2.3, the following will be-useful.

5.2.4 Definition: Let‘p be a probability meaéure defined on a sigma-
field $ of events, and let E, F € $ be two events. E%will be
said to p-induce F (denoted as E ~ F) iff there exists a
relation C£$ x § such that ¢ sagisfies'thevfirst and second
axioms of causality and (E;Fi £ K.
It may be conjectured, as it was by the preseﬁt authoﬁ that
E~>F and F > G implies E - G (where E, ¥, Ge s, for some sigﬁa—
: P '

- P P P
field $ and where p: $ - [0;1] is a probability measure). The

conjecture is false, as the counterexample kindly provided by
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P. R. Kleindorfer (personal communication), presented below,

demonstrates.

> need not be transitive.
p .

5.2.5 Proposition: (The relation)

PrOOf:Le£ $_be'the'power set of {a, b, c, 33 ;éﬁd let p: $ »[0,1]
be a probability measure such that p({a}) = p({b}) = p({c}h) = p({d})
= 1/4. Then :

1/2 = p({a, b}|{b,c}) >p({a,b} {b,c,d} ) = 1/3,
and |
p ({a, b}|{b,c}) = p(bse}|{a,b]) = 1/2,

so that

{b,c}- 3 {a, b} .

Also, _ .
1/2 = p(b, c}|{e, d1)> p(ib, c}|{a, b, é5> - 1/3

and | o )
p({b,c}|{c,d} ) = p({c, d}|{b,c} ) = 1/2,

.sq that
{b, ¢} 3 {a, b} and{c, ar - ; {p, ¢} .

-Howevér, it is not the case that {c¢, 4} '5-{a, L} , since
p ( {a, b}|{c, d}) = O contradicts that the first axiom of
causality holds for any_giC;$ x $ such that (~{é,.d}, {a, b}) £ k.

#
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5.2.6. Remark: It has long been recognized that "the causal arrow"
cannot be rega;ded as the 'copula' of logical implication,
notabl& fottheireason thap_thg'lattgr contraposes while the
former does not. Another difference between "the causal arro&"
and''the implication arrpw" is revealed by 5.2.5, if ; is accepted
as a "causal arrow". (This is so, for containment 'c' is transitive.)

Note also that a sure event can never be p;induced, for

there cannot exist a non-null subset conditianal upon which its
probability is less than unity.- Thus, e.g., ﬁitb reference
to 5.2.5, for any E eA$,—i ; {a, b, ¢, d}:implies that p(E) ; 0,
which is a contradiction: the first axiom of causality effectively
frevents one from saying, for an event, which.hapnens anyway,

that it is '"caused" bv some event.

Completely éacrificing the formal development of any interesting
mathématicél consequences from the axioms or definitions introduced;
the promised application of the above to the topic of pgwer will now
be pqrsued. The context of what follows is a ﬁroabébilistic‘social
sysﬁém with a ﬁersonﬁel A of typical behavors a‘é’A; For any

coalition B C A, 0 = T, is the joint action field of B, and
B _

s P
{8} B
of all jeint behaviors pB =0, > [0, 1] of B.

OB is shorthand for © is the behavor space of B, counsisting

The following definitién formalizes two key concepts.
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5:2.7 Definition: Let A be the personnel of a probabilistic social
system S, and let B, B' A be coalitions. For any joint

behavior pA of A, the power relation M(B, B': pA) is the set

M(B,B'; pA)_=’{(eB,eB,)]eB € Oy, Ou0 € Opyy O ; 0p }.

The power relation M(B', Bj; pA) is defined by'feplacing B with

B' and B' with B in the last expression. The power structure

of S subject to pA is the set M(S: pA) = {M(B, B"; p )IB, B' ¢ [A]}
. . v A
of all power relations M(B, B'; pA) between coalitions B, B'C A.

The power relations defined above particularize to "interpersonal"
velations when only singleton coalitions are considered (Cf.(Frey,

n.d; p. 17).) They, as well as M(S: pA),'can'be "quantified" in

the fashion now to be indicated.

5.2.8 Definition: Let M(B, B'; pA) be a power relatiom in a power

structure M(S; pA). Define the function m, for each ordered pair

(65,05+) with 6, €8 and eﬁ, € Op, by
Py log ] 051, i€ 6y MY

) A

m(eB’eB') = . .

- 30, otherwise.

The function m will be called the numerical representation of M(B,
‘B'; pp). The set of numerical representations ©f all elements

of M(S: pA)Awill be called the numerical representation of M(S;pA).
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Remark: The definanda of 5.2.7-8 aré all determined by one datum

alone, namely, the joint behavior p, of S.

Remark: A brief comparison of the function m with Dahl's "amount

of power™ [1957, p. 205] is in ordef. Althohéh the probability

measure he uses is not a joint behavior and his motion of action
is not clear, with some harmless change in notation, Dahl's

definition of the amount of power of B over B®, with respect to

s

the response 6_,, by means of 6 sets thig amount equal to
_ B B

. : <
A(8,,8,,) = Prob [QB‘lQBl - Prob [GB'!GBBV

If the probability pA is used, then A becomes more easily

comparable with m. In that case, m becomes the cduhterpart

here of A in Dahl's framewdrk. _Tﬁe two are -vewy differént function
of course, since the formalization of the undémlying notion of
power here fundamentally differs from)that of Mahl. In the

present fFaméwork pA{OB,(e ;] has no partic%ﬁém'significance

in the obtaining of the ﬁumber m (6, QB,), as #t has no special

role in determining whether or not GB 3 lﬁBnu It is important
- . ; A o
to note that m will detect some cases where & =% eB, by
) . Pa
B’ GB,) >0 while A will fail to: &o so. In fact

“

A may assign A(BB, BB,) < 0 while GB' 3 By 80 that m(eB,eB,) >0.

P
A .
Hence from the standpoint of the development here, Dahl's "

measure has to be classified as misleading.It. s remarkable that

two formalizations of the same intuitive notfmm (recorded at the
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outset), should give such disagreeing results. The fact is,
however, that the notion formalized here is actually the following:
B has power over B' with respect to inducee action QB‘, by means

“of inducing actingAeB, and subject to-pA, iff OB EA OB'; the
amount of this power is the'ptdﬁé%ility pA[eBJIBB] of the

inducee action conditional upon the inducing action.

In the above definitions and remarks concerning power, an
arbitrary joint behavior pA of the social systém Qas used in
computing ali the necessary probaBilities. _Thé iﬁportance of tﬁat
joint béhavior being an équilibrium poipt is clear, if the power
relatidns and power structure are to be gonsidered as non-transient.
For if the very fact tha§ a certain power structure (or pA) holds
leads to its being altered, as is the case for any non-equilibrium
pA,_;hen the power structgre (or pA) in»question,is transient and
" not a regularity. It is important, therefore, whether.there exists
anequilibrium Pp» for, if there does, then the associated pover
structure is an equilibrium power structure. That there does
exist an_equilibrium P, for cerfain probabilistic social systems
was Shpwn in [Sertél, 1969 a].’Generalizations of Fhat result and
the investigation of the attraction and s;ability'properties of
equilibrium setéAand cores appear clearly to promise an important

bearing on political analysis.
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Towards the Analysis of Attraction and Stabilitv

Given that the equilibrium set or Pareto set or core of

‘a social system is non-empty,- two important and related types

of question arise concerning these sets: aftractién and stability.
The tools for investigating these topics are to be found in the
theéry,of dynamical systems. Naturally, this ié'aléo'where the
notions themselves of attraction ;ﬁd stabilitﬁ are developed,

so it is there that one has to turn in order to see pfecisely
what’these are. A few preliminary definitions of this theory

will be presented here to crystallize the reqﬁired éoncepts. Then

it will be shown how a social system may'be looked upon as a

-~

dynamical system, so that the theory of the latter may be applied
to the former. Finally, séme discussion will follow.

?ossibly the mostAprominent author on attraction, as well
as_therriginator of thé‘notion of‘weak attractioﬁ; is Bhatia (1966).
The definitions to follow, however, are borrowéd from another |
promiﬁent author, Szegt(1968). They are slightly modified in
harmless fashion to relate most directly to socig}:systems és an
area of application. Because-oflfhis,fsome of the terﬁs have
been changed, iﬁ order to avoid confusion. thably, the notion of

a dynamical system has been modified and the term "evolutionary

system' attached to the result.
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For the following definitions, let X be'a'locally compact
Hausdorff spacé, and denote the set of non-negative integers by

' Z, taking the order topology on Z. A bar across the top will

indicate topological closure. .-~

.3.1 Definition: A evolutionary system is an ordéred triplet

<X, Z, E> , vwhere

3.1.1) E:X x Z ~X is an usc point-to-set mapping;

3.1.2) - E(x, 0) = x (x ¢ X);

3.1.3) E(E(x,m),n) = E(x, wmn) (x e X35 my ne Z).

.3.2 Definition: The future of a point x £ X is the set F(x) =

:E(fx} X 7).

.3.3 Definition: The limit set of a point x € X is the set

Lx)y = N F.
yeF(x)

.3.4 Definition: Let M CXbe compact.
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(5.3.4.1) Af(M) = {le<x)(\M + 03

~ds called the region of weak attraction of M. M is called

a weak attractor iff A"(M) is a nbd of M.

(5.3.4.2)  &ton = (x|p £ LD C M}

is called the region of attractisn of M. M is called an

_attractor iff AT(M) is a nbd of M.

5.3.5 Definition: Let M(C X be compact.

(5.3.5.1) M is stable.iff; for every nbd V of M, there exists a nbd

U of M such that F(U) C V.,

(5.3.5.2) M is-asymptotically stable iff it is a weak attractor and

; staﬁle,

The above definitions will now be interpreféd from the viewpoint
ofhtheir application to social systems. The spaﬁe‘x is to be
interpreted as the domain of an eéol&tion, so that, depending
on the soéial system in miﬁd,'X will be either Siﬁply the collective
(or joint) behavior space, or it will be the proéuét of the
collective (or joint) behavior space with the cqllective feasibility

space. In each of the cases where the contractual set was proved
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_ to be non-empty in this study, X was compact, hence satiéfying
" the requirement that it be a 1oca117‘compact,Haﬁsdorff space.

Now the mapplng E can be related to the evolutlon of a soc1a1

.

system. Denotlng the latter by Fl, equate E (x) i E (x,1). Then
E! is the one~time~application of E. The condltlon 5.3.1.2
stétes that if E is applled zero times, then nothlng changes.

If it is applied two times,then E(x, 2) = E(E(x 1), 1) = F (E1
x)), and so on. This 1$ clearly consistent wi;h the idea of

an evolution. As to E being usc, itvhas to bé‘éeﬁatged that

gl was uéc.in every case where it was shown t0 ha§é a fi#ed point.

From the fact that E' is usc, it follows that, defining

0 V .
E (X) = E (X’ 0)’
B @ =1, 2,000,
n .
E 1is usc forvany ngeg Z.

Now let V be a nbd of E(x, m). To show that E is usc, one
‘needs to show the ekistence 6f nbd U of (x,m) shchzthat E(U) C V.
" Note that E(x, m) = E™(x) and that {m} is a nbd of m. Since
Em is usé, tﬁere exists a nbd N of x sﬁch that Em(N)(: V. Then
U= DN x {m} is a nbd of (x, m) such that E(N x {m}) = ER(N) C V.’

‘ . Z . h I
Hence, E is usc, from the dssumption that E  is so. Thus, as

long as usc evolutions are used, as dome in this study, to
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establish the non-emptiness of a contractual set, it is i rmless

to assume 5.3.1.1. This concludes the justification for

5.3.1 as a whole.

Regarding thé ;ét M used in the definitions 5.3.4—5; notice
that it can ﬁe iﬁterpreted as a contractual set (or core, etc.)
as long as compactness is guaranteed for thé latter. In the case
of the sets proved to‘be non—empty in this stﬁd?, the requirement
is met’

The idea intended to be communicéted by the present séction
is that the theory of dynamicél systems may offer the toolg fquired
for the attraction and stability analysis of the equilibriuﬁ set
and core of ; social system. The modifications with which the
definitions above were presented amount to incorporating the case
where E is a point~to-set mapping, as corresponding to the fact
that an-gvolution El ié, in general, of this nature.

Without some rather stringent assumptions (in the nature

of strict quasi-concavity for certain restrictions of effective |
utiiity functions) the evolution of a social systeﬁ will usually
not be a poi?t—to—point mappingf In this case,‘the usual Liapunov
"or simpler methods ofrstabiiity anal§§is are Inapplicable, so tﬁat
some remedy has to be sought. The discussion above is the result
of some groping in‘that direction,

3
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Towards the Planning and Control of Organizations

The purpose of this section is to indicate selected extensions

and applications of the above framework and théory which bear

especialy on the management of social systems. The section has to
be selective for the same sort of reasoﬁs that would force one to be
so if one were 1isting the uses of addition and multiplicétion. If
has to be selective also for the reason that,:aftér a point it
is mope'fruitful to do than to taik about the doiné; to extend
and to apply rather than to en&lesély.converse on'ﬁhere and how to
extend and to apply. -

ﬁManagemenf", at least for the’present disgﬁséion, is the
guessing of what is an achievable '"best" and the'seeiné to.it
that suéh a best is achieved. So, with no gréat loss in paraphrasing,
it is planning and control. The guessing of what is achievéble and
best, i.e., planning, is a matter of knowing whaflarg reachable
pdints of the universe, having cfiteria of goodnegs for those
points, and, last but not ét all least, having-a framework and
accompanyiﬁg methods, tools of analysis, to acéualiy select a
point. And by the framework and method of analysis~is not meant
as much an optimizing algorithm as,iéimeant a way.éf thinking,
modelling, faithfully abstracting essentials and simply'
representing, in a fashion that is perhaps communicgble to some .
optimiziﬁé algorithm. é

Supposing that a best achievable point is known, the actual
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seeing to it that the point is approximated in reality is a matter
of cont}olling the éystem whose performance is,in question and which
- performance is one of tﬁe reachable."poihts" in this abstract

discourse. The ability to cpntrol/thig sys£emlin turn depends on
what variables - "knobs, butggns,‘and levers", as it were - can
be set, and on knowing ﬁow the system respénds to the various
values at which these can be set.

Whén the system in question is a social systeﬁ, as it
always is in any nbn—t;ivial management problem,‘éﬁdiwhén it
is a lafge system, there is really no way to méﬁage but to work
with a highly abstract model of it. This is ﬁotxto say that
one cannot manage or improve the pefformance of éAgivén hospitél,
scﬁool, business o;ganization, football ﬁeam qf economy without
such abstraction, It is to say, hoﬁever, thét -~ as Polya is
known to bave remarked - a trick will work once, and it ié a method
" that works the next time.

it is the ébtaining of such methods of management Which is
addressed aes an applicati;ﬁ here. It will Be taken as:granted that
the system to be managed is a social svystem, its performance
de?ending on fhe behavior of the system and that béhavior being
" a coﬁciée way of exf?essing the behaviors,of the ﬁémbers, or ,
in peneral, the coalitions.

It will be assumed that there is somevcriferion or ijective
" functional which numericalfy represents the pérformance of the

system as a function of its behavior. If there is no such guide
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for comparing one behavior of the-sysgem with another behavior,
then ighis not possible to guess what is a "best" behavior; so, to
talk of managing the system, such a guide has to be assumed to
exist. In reality, much of fﬁe d§f§iculty of management may be
" due to thé absepce of such a gﬁide in clearcut form. But there
is nothing thaf can be done aﬁout‘that heré. 1f the objective
is too.vague, it will not be possible to discriminate good
management from bad anyway.

The nature of this objective functional gaﬁ be expressed with
- the example of an economy. Think of a gross sbtﬁ‘of "production
funcyidn" which shows national income és a function of levels of
vérious activities. Supposing that‘natgonal income is the better
thé larger, i.e., that it is a true measure of ﬁérformance, and
looking at the mentioned "activities" as behaviors of one sort of
another -~ or as aggregations of and decomposable into such - what
one ﬁas is an objective functional»qf the kind ﬁhat will be
supposed.

It is an opportune moment to define an organization
Q= <8, q> as a social system S together with an objective
_functional q;X + R, where X is eithe?, as usual, the collective,
or the jointnbehavior space of S. TFor the sake of simp1icity;
assume that the personnel ﬁ = <1, ..;., n> of § is finite.

Often, when an organization 2 = <§, o> is épeéified,q is a
"gross" and not a "net" ngecgive functional, in a sense that

will now be seen. Consider the case of a business organization
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and let q represent revenue net of all expenseé but wages and

'

salaries. The incentive functions g5 (i € N) express amounts,

"in money units for the example being considered;bgiven to the

various members of the personnel. Summing up, one obtains the

L g., so that
N 3

payroll function p =

p(x) = £ g, () (xe X)
N ‘
represents the additional pavroll expense which has to be
deducted from q(x) to compute the profit f(x) = é(x)—p(x) as
‘a function of the behavior x of the Qrganizatioﬁ Q.
Suppose.now that one seeks the "optimai" inééhtiﬁe scheme

g = (gl, srees én). For a profit~maximizing concéfn, the function
sought is g* such that,laﬁong all incentive schemeé,'g* mnaximizes
profit. But ﬁhis is not such a clear statemeﬁt‘yet;kfor the
behavior x of @ depends on the incentive séheme imposed, and there

may be more than one possible way in which the system S behaves for

a given g. Furthermore, the set of these behaviors corresponding

to g maybe a large set. Worée, there may be no equilibrium behavior
when g is imposed, the behavior of § cygling afouﬁd.in that set of
behaviors associated with é. ‘"It is not possible in general then

_ to write x as a function ¥(g) qf.g and then write f = £(y(g)) to search

for an optimal, i.e., f-maximizing,incentive scheme g¥.
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If there exists an équilibrium behavior x « .w(g), however,
then things are différent. Suppose it is knmm% fthen that there is
"~ a fairly wide class I' of incentive schemes such: ithat for every
ge T, thg system S has an equilibfium. Such @ «class I' is
iaentifi'ed by the equilibrium exiStence"theoreﬁé of this studv for
a variety of social systems S. Suppose that a ffairly wide subset
of I were identified to be a set of incentive scdﬁemes for which

the equilibrium set has further nice properties;, such-as being an

attractor and being stable. We already know tﬁa;ff’étﬁe equilibrium
set is cqmpact for each of the cases where it wams proved in this
study to be_ non-empty. Suppose that further s,tﬁu'di‘es, extensions
of. the present one, tegch us how to find a subsmet 1! of r for
which ﬁhe eq_uilibrkium ‘sets are all verv small, zranigl stable
" attractors. Then p(g) for each g € T' can be mepresented, for all
practical purposes, by a single point x € w(g)}..

Now, returning to the original pfoblem of m.pt'imizing the

incentive scheme, write

(Max) £ (g))

s.t gel' ‘ -
as a well-defined optimi‘zatidri‘pr'oblem. "ProbYemss of this sort have
been considered by Kriebel. and Lave [1969]. & mai‘ti&culatly
interesting case is that of the "coristiar'xt—-shaﬁvee finite organization",

where gj = qu? )‘20‘0’ )\i-‘,. .o )‘n) being a nonhnef;ative vector

. ntl . n A » .

in E with T ;\j = 1, determining £ = 3 g @ 2s the profit
§=0 |



‘117
function. Assuming negative definite quadratic effective ﬁtility
functiéhs ﬁj and similar g, preliminary results have been obtained
by P. R. Kleindorfer ana this author. |

The ‘above constitutes one illustration of how one would
usefully ﬁro;eed from the present’stﬁdyAin ob;aining results
central to the management_of organizations. Tﬁe’basic ideas behind
what was just illustrated arose during'the’wfitihg of a paper on
organiiétiunal struCturés ( Zannetos and Sertel, 1971).

This should be taken as an indicatiqn that they will be followed up.

Whilg on the topic of.incentiVe schemes,'it'is oppbrtune
to meption how this relatesﬁfo the topics of regulation and
legislation as specific instances Qf the generél topic of controlling
social systems.

No great imagination is requifed to see that the idea of
an incentive scheme is an idealiza?ion of the notion of a
"rule, regulation or law in a social cdntext. The éénctions behind
laws are not always real—yalued, but usually reaiAVector—valued.
For example, a sentence of 18 months imprisonment and§a $35,000

fine can be pronounged together. Suspensions of licences, etc.,

are also sanc£ionsf So, in general,;incehtiveé are not real-
valued. But this is not a tremenddus bibw to the model of a social
system presented here, for vector-valued incentives can be
incorporated with no serious trouble, except for some tedium in’
isome of the proofs. In ordér not to complicate.thé quel any

further, so that its main features stand out more clearly,
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incentives were represented as real numbers . Recognizing all this,
however, the bﬁsiness of legislation is easily'seen‘to be truly
a managerial activity. The ghoice'of incentive scﬁeme for the
profit—maximizing‘organization considered above'énd the making
" of laws aré essgntially the same sort of thing.
How do thé existence and various properties of equilibrium
or core points relate to the topié of legislation? Perhaps the
easiest way to communicate how is by means of an examplef Take
the case of a typical unsuccessful ”rqral feforﬁ”, in a backward
"and strongly feudal region, which redistributes land and illegalizes
all taxes paid by peasants to landlord. The mere passing of the
law makes-litple differences to reality, for the sYstem tends
right back to its original equilibrium, if ever it is disturbed
-ih the first piace. - To prevent what is inteﬁded to be prevented,
an'ingentive scheme has to be found under Whichkthe‘undesired
status-quo is left outside the equilibrium set. Té make sure it
really works, the equilibrium set induced by the 1egislation has
to be an attractor and stablé, so that the behaviof of the
system is attracted toward this set and, once attracted, stays
in that vicinity.

Successful legislation requires, théreforegran equilibrium

énalysis of the social system, whether this is based on strong

social intuition or mathematics. Often it is not possible to

-

alter the status—quo without a re-socialization of the personnel.
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Consider the case where one is illegalizing head-hunting in the
Phillipines, polygamy in a traditional Islamic community, racial
discrimination in South Africa, or slaverv in earlier America.

-To the people whose behavior has to be‘alteredé there is nothing

wrong with their present behgvior, in fact, what i$ asked of them

seems ridiculous or even immoral to thém. There is little

that can be done by 1egiélatidn, except for that legislation which

affects the socialization process, giving new values'to'new vintages

of entrants into the personnel, while the older viﬁtage dies.
Blaqk—marketeering and smuggling aré,typically behéviors

.which cannot be prevented excépt by réadjustment of fhe relative

pricé veétor, for it is the fact that’thgy belqng to the equilibrium

set of the present price vector that accounts for their presence.

Adjusting the price vector, of course, often defeats the purpose

of making certain goods and services unavailable in the first place,

s0 this'éonstitutes no way out. The idea of illegélizing certain

production and tréde activities and imposing san;tipns tries to

add new "price tags" of pbssible imprisonment, etc., to the usual

one of pence and piastres, and seeks thus to make the deaiing

in the markets in queétion unatﬁractive. It sucégeds to the

extent that the elongated new Vprice.vec£or" ﬁ@ves the equilibrium

set away from fhose collective behaviors in which the qndesired

behaviors are components.

Another example of a case where some equilibrium analysis

is needed is the prevention of fraud in an aceounting system. The usual
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rule is well-advised: make it necessary to form as large coalitions
,as possible for fraud to become undetectable. Requiring that at
least two people coalesce for any-fraud to succeed is the usual

extent to which this rule is carried. The extreme application would

be to expel all fraud from tﬁe core. That, of‘éourse, may require
a bit more fhaﬂ intuition tO'successfully do.
?he exampié éf the accounting system, however, is interesting
in a different sénse fhan the earlier examples. vFor the method
of fraud-prevention here is also infbrmétion—systemig rather than.
purely incentive—sqnction based. For it is alreaﬁy illegal
and severely punishable'to-theat; The key is to yield the undesirable
beha&ior detectable or observable whenever it becoﬁes possible;
ié., unblocked.

All the above hints at three main means of social control:

remunerational (via incentive schemes), socializational (via

alterations in utility schemes) and informational. The last mentioned
can be explored a bit further. The impression functions of the
framework used in this study can be decomposed into two functions.

o

Take a typical impression function hy X* > X%, Let Ga:Xa - X

be a fuhctiqﬁ called the data function: reporting to o . Look at

" the function 6&: X xd Hﬁadefined by §(x) = Hﬁa(x Y. This function
' I A A :
is appropriately considered as an information system. The data

flowing through it, the filters and agpgregation imposed, are all part
of the information system;design. Now respecify the old impression

function ha‘as follows:
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- ha(x“) = Ea(xa, Ga(x“)). (%a € X?)‘ﬂ
in tﬁe new form, o sees-two things,Via and Ga(xa). 0f.these
éa(xa) is whét he is told about x%. From all this, ﬁa obtains
anrimpress;on h, (xa). This impression.is the q—exclusive behavior
which o then bases his choice of behavior on.

Now if ﬂu is given as a parameter of «a, ha can be_influenéed
by altering Ga" That is to éay;.h, the impression scheme, can
be altered by alteriﬁg 8, the information system. This alters
the choice of behavior, the equilibria, and so or{.i

The above indicates a further direction in which the model

‘used in this study can be extended, and identifies a further

N

form of informational control, that is, control via the

~information system. It is easy to see how the specification of
the interpretation scheme could be modifed also in similar
fashion.

Finally, the above discussion can now be used to indicate

‘a further extension of the model, towards multi-level social systems.

For consider now the fact that there aré'many people who already
realize thét a social system can be>controlied in fhe ways
described above, each imposiné an incenfiﬁe scheme, socialization
process or information system. It is possible to view the behaviors

of these controlling agents as points in suitable function'spacés,

-~

and the agents themselves as behavors in a "second-level social
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system} affecting the behavior of the underlying social system.
It is possible, therefore, to carry out an anaiysis of tﬁis second
level as one did of the first, and to investiggte how the two-
levels rélate. For examble;_how-do the respective equilibria
relate? "ﬁierarchicél" social systems thus become an extension of
the ones considered here. -

This concludes the present discourse on qu'to fruitfully

extend the present model: Now is the time to bégin the

investigations indicated.

LN
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